• Title/Summary/Keyword: DAR(1)

Search Result 396, Processing Time 0.022 seconds

Application of LiDAR Data & High-Resolution Satellite Image for Calculate Forest Biomass (산림바이오매스 산정을 위한 LiDAR 자료와 고해상도 위성영상 활용)

  • Lee, Hyun-Jik;Ru, Ji-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.53-63
    • /
    • 2012
  • As a result of the economical loss caused by unusual climate changes resulting from emission of excessive green house gases such as carbon dioxide which is expected to account for 5~20% of the world GDP by 2100, researching technologies regarding the reduction of carbon dioxide emission is being favored worldwide as a part of the high value-added industry. As one of the Annex II countries of Kyoto Protocol of 1997 that should keep the average $CO_2$ emission rate of 5% by 2013, South Korea is also dedicated to the researches and industries of $CO_2$ emission reduction. In this study, Application of LiDAR data & KOMPSAT-2 satellite image for calculated forest Biomass. Raw LiDAR data's tree numbers and tree-high with field survey data resulted in 90% similarity of objects and an average of 0.3m difference in tree-high. Calculating the forest biomass through forest type information categorized as KOMPSAT-2 image and LiDAR data's tree-high data of tree enabled the estimation of $CO_2$ absorption and forest biomass of forest type, The similarity between the field survey average of 90% or higher were analyzed.

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.

Development of Human Following Method of Mobile Robot Using QR Code and 2D LiDAR Sensor (QR 2D 코드와 라이다 센서를 이용한 모바일 로봇의 사람 추종 기법 개발)

  • Lee, SeungHyeon;Choi, Jae Won;Van Dang, Chien;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • In this paper, we propose a method to keep the robot at a distance of 30 to 45cm from the user in consideration of each individual's minimum area and inconvenience by using a 2D LiDAR sensor LDS-01 as the secondary sensor along with a QR code. First, the robot determines the brightness of the video and the presence of a QR code. If the light is bright and there is a QR code due to human's presence, the range of the 2D LiDAR sensor is set based on the position of the QR code in the captured image to find and follow the correct target. On the other hand, when the robot does not recognize the QR code due to the low light, the target is followed using a database that stores obstacles and human actions made before the experiment using only the 2D LiDAR sensor. As a result, our robot can follow the target person in four situations based on nine locations with seven types of motion.

Comparative Analysis of Digital Elevation Models between AW3D30, SRTM30 and Airborne LiDAR: A Case of Chuncheon, South Korea

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • DEM (Digital Elevation Model) is a useful dataset which represents the earth surface. Beside many applications, production and frequent update of DEM is a costly task. Recently global satellite based DEMs are available which has huge potential for application. To check the accuracy, this study compares two global DEMs: AW3D30 (Advanced Land Observing Satellite World 3D 30m) and SRTM30 (Shuttle Radar Topography Mission Global 30m) with reference resampled LiDAR DEM 30m in a test area around Chuncheon, Korea. The comparison analysis was based on statistics of each DEM, their difference, profiles, slope, basin and stream orders. As a result, it is found that SRTM30 and AW3D30 were much similar but inconsistent in the test area compared to the LiDAR30 DEM. In addition, SRTM30 shows less difference with LiDAR30 compared to the AW3D30 DEM. But, DEMs should be very carefully examined for area which has temporal or season changes. For basin and stream analysis, global DEMs can be used only for regional scale analysis not local large scales.

Study on the Terrestrial LiDAR Topographic Data Construction for Mountainous Disaster Hazard Analysis (산지재해 위험성 분석을 위한 지상 LiDAR 지형자료 구축에 관한 연구)

  • Jun, Kye Won;Oh, Chae Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.105-110
    • /
    • 2016
  • Mountainous disasters such as landslides and debris flow are difficult to forecast. Debris flow in particular often flows along the valley until it reaches the road or residential area, causing casualties and huge damages. In this study, the researchers selected Seoraksan National Park area located at Inje County (Inje-gun), Gangwon Province-where many mountainous disasters occur due to localized torrential downpours-for the damage reduction and cause analysis of the area experiencing frequent mountainous disasters every year. Then, the researchers conducted the field study and constructed geospatial information data by GIS method to analyze the characteristics of the disaster-occurring area. Also, to extract more precise geographic parameters, the researchers scanned debris flow triggering area through terrestrial LiDAR and constructed 3D geographical data. LiDAR geographical data was then compared with the existing numerical map to evaluate its precision and made the comparative analysis with the geographic data before and after the disaster occurrence. In the future, it will be utilized as basic data for risk analysis of mountainous disaster or disaster reduction measures through a fine-grid topographical map.

3D RECONSTRUCTION OF LANDSCAPE FEATURES USING LiDAR DATAAND DIGITAL AERIAL PHOTOGRAPH FOR 3D BASED VISIBILITY ANALYSIS

  • Song, Chul-Chul;Lee, Woo-Kyun;Jeong, Hoe-Seong;Lee, Kwan-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.548-551
    • /
    • 2007
  • Among components of digital topographic maps used officially in Korea, only contours have 3D values except buildings and trees that are demanded in landscape planning. This study presented a series of processes for 3Dreconstructing landscape features such as terrain, buildings and standing trees using LiDAR (Light Detection And Ranging) data and aerial digital photo graphs. The 3D reconstructing processes contain 1) building terrain model, 2) delineating outline of landscape features, 3) extracting height values, and 4) shaping and coloring landscape features using aerial photograph and 3-D virtual data base. LiDAR data and aerial photograph was taken in November 2006 for $50km^{2}$ area in Sorak National Park located in eastern part of Korea. The average scanning density of LiDAR pulse was 1.32 points per square meter, and the aerial photograph with RGB bands has $0.35m{\times}0.35m$ spatial resolution. Using reconstructed 3D landscape features, visibility with the growing trees with time and at different viewpoints was analyzed. Visible area from viewpoint could be effectively estimated considering 3D information of landscape features. This process could be applied for landscape planning like building scale with the consideration of surrounding landscape features.

  • PDF

Educational Indoor Autonomous Mobile Robot System Using a LiDAR and a RGB-D Camera (라이다와 RGB-D 카메라를 이용하는 교육용 실내 자율 주행 로봇 시스템)

  • Lee, Soo-Young;Kim, Jae-Young;Cho, Se-Hyoung;Shin, Chang-yong
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.44-52
    • /
    • 2019
  • We implement an educational indoor autonomous mobile robot system that integrates LiDAR sensing information with RGB-D camera image information and exploits the integrated information. This system uses the existing sensing method employing a LiDAR with a small number of scan channels to acquire LiDAR sensing information. To remedy the weakness of the existing LiDAR sensing method, we propose the 3D structure recognition technique using depth images from a RGB-D camera and the deep learning based object recognition algorithm and apply the proposed technique to the system.

Tightly-Coupled GNSS-LiDAR-Inertial State Estimator for Mapping and Autonomous Driving (비정형 환경 내 지도 작성과 자율주행을 위한 GNSS-라이다-관성 상태 추정 시스템)

  • Hyeonjae Gil;Dongjae Lee;Gwanhyeong Song;Seunguk Ahn;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.72-81
    • /
    • 2023
  • We introduce tightly-coupled GNSS-LiDAR-Inertial state estimator, which is capable of SLAM (Simultaneously Localization and Mapping) and autonomous driving. Long term drift is one of the main sources of estimation error, and some LiDAR SLAM framework utilize loop closure to overcome this error. However, when loop closing event happens, one's current state could change abruptly and pose some safety issues on drivers. Directly utilizing GNSS (Global Navigation Satellite System) positioning information could help alleviating this problem, but accurate information is not always available and inaccurate vertical positioning issues still exist. We thus propose our method which tightly couples raw GNSS measurements into LiDAR-Inertial SLAM framework which can handle satellite positioning information regardless of its uncertainty. Also, with NLOS (Non-light-of-sight) satellite signal handling, we can estimate our states more smoothly and accurately. With several autonomous driving tests on AGV (Autonomous Ground Vehicle), we verified that our method can be applied to real-world problem.