• Title/Summary/Keyword: DAE Solver

Search Result 43, Processing Time 0.016 seconds

Application of the Preconditioned Conjugate Gradient Method to the Generalized Finite Element Method with Global-Local Enrichment Functions (전처리된 켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용)

  • Choi, Won-Jeong;Kim, Min-Sook;Kim, Dae-Jin;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • This paper introduces the generalized finite element method with global-local enrichment functions using the preconditioned conjugate gradient method. The proposed methodology is able to generate enrichment functions for problems where limited a-priori knowledge on the solution is available and to utilize a preconditioner and initial guess of good quality with only small addition of computational cost. Thus, it is very effective to analyze problems where a complex behavior is locally exhibited. Several numerical experiments are performed to confirm its effectiveness and show that it is computationally more efficient than the analysis utilizing direct solvers such as Gauss elimination method.

A Study on Integrated Operation of School Bus in Suburbs (교외지역 통학버스 통합 운영 방안 연구)

  • Ko, Young Dae;Oh, Yonghui
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.899-910
    • /
    • 2018
  • Purpose: Generally, since the population density is lower in suburban areas, the distance to school is inevitably long. Therefore, schools in suburban areas often operate school buses to improve student welfare. However, since school buses are usually used only during going to and from school, the utilization rates are relatively low. Therefore, this study aims to establish integrated operation plan of public school bus covering all schools. Methods: It is necessary to decide which school buses will serve the specific demand node which want to go to certain school in order to design an integrated operation plan for school buses. Therefore, a mathematical model is developed for minimizing the total number of vehicles and the distance of transportation by reflecting the characteristics of school buses and students as constraints. To solve the proposed mathematical model, CPLEX, a commercial solver, is applied. Results: To validate and to confirm the proposed process, numerical example is designed with the comparison between before and after integrated operations of school buses in terms of total operation cost. The result shows that the integrated operation can lead the reduction of the number of school buses as well as the decreasing of the fuel cost. Conclusion: This study provides the quantitative method to perform the integrated operation of school buses in suburban areas. The optimal operation strategy is required because there are more complex decision-making elements considering the integrated operation. It is expected to apply this research result at real situation to expand this services based on an optimal operation.

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.