다양한 과학 분야와 공학 분야에서는 그들이 다루고 있는 특정한 주제의 정보를 좀 더 신속하고, 명확하게 사용자에게 전달하기 위해서 여러 가지 정보 가시화(information visualization) 기법을 사용한다. 정보를 가시화 할 때는 기본적으로 세 가지 과정을 거치는데, 원천 데이터(raw data)로부터 데이터 모델(data model)로 변환하고, 변환된 데이터 모델을 가시화 구조상(visual structure)에 매핑(mapping)시킨 후 정보화 모델(information model)로 변환하게 된다. 본 논문에서는 특정 행사가 진행되고 있는 건물내부에서 발생하는 시간, 공간적인 정보를 정리한 도표 메타포(table metaphor)를 토대로, 해당 데이터 모델로부터 추출한 다양한 정보를 3 차원 지도로 구성된 정보화 모델 상에 반영하기 위한 방법을 제안하였다. 또한, 정보를 단순히 공간상에 반영하기 보다는 사용자의 관심영역(interest area)에 따른 정보의 공간적 의미에 중점을 두어 3차원 공간상에 표현하였다.
선형혼합분광분석(LSU, Linear Spectral Unmixing) 모델은 위성 영상의 한 화소 값이 공간 내에 포함된 다양한 지표 대상물의 반사에너지가 혼합된 결과로 나타난다는 가정을 통해 화소이하(Sub-Pixel) 단위의 영상 분석을 수행하는 알고리즘의 한 형태이다. 분석의 결과는 한 화소에 존재하는 순수 대상물(Endmember)의 비율로 나타나며, 최소제곱법을 이용하여 결과를 도출하는 것이 일반적인 방법으로 알려져 있다. 하지만, 최소제곱법을 이용한 선형혼합분광분석모델은 기본적인 가정을 만족시키지 못하며, Endmember를 사용자가 임의로 지정해야 하기 때문에 영상 분석에 많은 어려움이 있다. 이런 단점을 극복하기 위해 무감독으로 추출된 Endmember를 이용한 제약선형분광혼합분석(Constrained Linear Spectral Unmixing) 모델을 본 연구를 통해 제안하고자 한다. 결과를 통해, 무감독 제약선형분광혼합분석 모델은 선형분광혼합분석 모델에 비해 각각의 Endmember에 대하여 제약조건을 만족하는 점유비율(Abundance) 정보를 제공하였으나, 비슷한 Endmember를 중복 추출할 수 있는 가능성도 지니고 있음을 확인할 수 있었다.
3상 인버터의 PWM 구동시 인버터 파워모듈의 IGBT와 Diode에서는 도통 손실 및 스위칭 손실이 발생하며 이러한 손실은 소자의 정션 온도를 증가시킨다. 하이브리드 차량(HEV)의 경우 다양한 주행 조건에서 IGBT와 Diode가 제한 온도를 초과하지 않도록 해야한다. 본 연구에서는 순시 전압 및 전류에 대한 3상PWM 인버터의 손실을 계산하고 열모델을 통해 소자의 온도를 파악함으로써 하이브리드 차량의 성능 예측에 활용하였다. 열모델은 파워모듈 각 상의 IGBT와 Diode 사이의 상호 열전달을 고려하였으며 시험 결과와 시뮬레이션 결과 비교를 통해 열모델의 타당성을 살펴보았다. 제안된 모델을 통해 다양한 주행 조건에서 하이브리드 차량의 성능 분석을 실시하였다.
The Journal of Korean Association of Computer Education
/
v.5
no.4
/
pp.123-133
/
2002
In this paper we proposed EduCODE for educational contents development method and designed the system to support EduCODE. There are four models in EduCODE such as domain model, navigation model, abstract interface model, and asset model. The method includs graphic notations for contents structure. The system to support EduCODE consisted of authoring module and run-time module. The authoring module automatically generates ADL SCORM XML code using specifications produced by EduCODE and the code is serviced to a client by run-time module and web server.
UML(Unified Modeling Language)은 OMG(Object Management Group)에서 표준으로 지정한 통합된 시스템 개발방법론이다. 특히, 소프트웨어 시스템의 설계 및 개발 등을 체계적으로 지원하는 모델링 언어이다. 이러한 UML로 개발된 모델들의 효율적인 관리를 위하여 통합하여 저장하고 관리하는 것이 필요하다. 이를 위하여 본 논문에서는 UML을 관계형 데이터베이스로 사상시키고 질의하는 알고리즘을 제안한다. 제안한 알고리즘은 UML 모델들을 다수의 사용자가 서로 공유하도록 하여 시스템 개발 분야에서 모델의 재사용과 모델정보의 검색을 보다 효율적으로 수행할 수 있도록 한다.
본 논문은 Cascaded H-bridge 멀티레벨 인버터의 출력 전압 레벨 수의 증가를 위한 모델과 스위칭 기법을 제안한다. 제안하는 모델은 기존의 Cascaded H-bridge 멀티레벨 인버터 구조에서 각 H-bridge 모듈의 출력단에 변압기를 연결하고, 변압기 2차측을 직렬로 연결한 모델이다. 이 구조에서 다수의 변압기의 턴비는 동일하고, 1개의 변압기 턴비만이 다른 턴비를 갖게된다. 따라서 1개의 변압기 턴비를 조절하여 출력전압의 전압 레벨수를 증가시킬 수 있다. 스위칭 방법은 기존에 멀티레벨 인버터에서 주로 사용되는 Level-shifted PWM 방식을 이용하여 간단하게 구현할 수 있다. 제안하는 모델의 검증을 위하여 시뮬레이션을 수행하여 제안하는 모델의 타당성을 확인한다.
빅데이터 산업 부상과 함께 교육 데이터 분석 분야가 새롭게 주목받고 있다. 교육 현장에서 학습 데이터의 양과 종류는 꾸준히 증가하고 있고 이를 분석하기 위한 정보기술도 계속 발전하고 있다. 한편, 학교 교육은 사회적 성취와 밀접한 관련이 있어 사회이동의 중요한 수단이 되는 만큼 학교 교육으로부터 이탈할 위험이 있는 학생들을 조기에 발견하여 이탈을 방지하는 것은 매우 중요하다. 본 논문은 대학생의 중도탈락을 예방하기 위해 로지스틱 회귀분석과 다층 퍼셉트론 기법을 이용해 학습 데이터를 분석하여 예측 모델을 생성하고 해당 모델을 평가한다. 평가 결과, 다층 퍼셉트론 모델이 로지스틱 회귀분석 모델에 비해 정확도와 재현율은 우수하였지만 정밀도는 약간 저조하였다.
Kim, Seo-Young;Jeong, Kyung-Hwa;Hwang, Yuna;Nyang, Dae-Hun
Annual Conference of KIPS
/
2021.05a
/
pp.132-135
/
2021
최근 네트워크의 확장으로 인한 공격 벡터의 증가로 외부자뿐 아니라 내부자를 경계해야 할 필요성이 증가함에 따라, 이를 다룬 보안 모델인 제로트러스트 모델이 주목받고 있다. 이 논문에서는 reverse proxy 와 사용자 패턴 인식 AI 를 이용한 제로트러스트 아키텍처를 제시하며 제로트러스트의 구현 가능성을 보이고, 새롭고 효율적인 전처리 과정을 통해 효과적으로 사용자를 인증할 수 있음을 제시한다. 이를 위해 사용자별로 마우스 사용 패턴, 리소스 사용 패턴을 인식하는 딥러닝 모델을 설계하였다. 끝으로 제로트러스트 모델에서 사용자 패턴 인식의 활용 가능성과 확장성을 보인다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.37-38
/
2024
본 연구에서는 순천향대학교 천안병원에서 제2형 당뇨병 입원 환자를 대상으로 연속 혈당 측정기(CGM)를 통해 일주일 동안 수집된 101명의 혈당치 데이터를 사용하였다. 혈당치의 120분 동안 수집된 데이터를 기반으로 30분 후의 혈당치를 예측하는 트랜스포머 모델을 제안한다. 이는 트랜스포머의 인코더 모델만을 사용한 거보다 성능이 평균 제곱근 오차 (RMSE) 기준 약 4배 정도 향상하였으며, 이는 트랜스포머의 디코더 모델이 성능 향상에 효과적임을 보인다.
In this study, a method has been proposed to improve the performance of hydraulic property estimation model developed by Jeong et al. (2020). In their study, low-dimensional features of the annual groundwater level (GWL) fluctuation patterns extracted based on a Denoising autoencoder (DAE) was used to develop a regression model for predicting hydraulic properties of an aquifer. However, low-dimensional features of the DAE are highly dependent on the precipitation pattern even if the GWL is monitored at the same location, causing uncertainty in hydraulic property estimation of the regression model. To solve the above problem, a process for generating the GWL fluctuation pattern for conditioning the precipitation is proposed based on a conditional variational autoencoder (CVAE). The CVAE trains a statistical relationship between GWL fluctuation and precipitation pattern. The actual GWL and precipitation data monitored on a total of 71 monitoring stations over 10 years in South Korea was applied to validate the effect of using CVAE. As a result, the trained CVAE model reasonably generated GWL fluctuation pattern with the conditioning of various precipitation patterns for all the monitoring locations. Based on the trained CVAE model, the low-dimensional features of the GWL fluctuation pattern without interference of different precipitation patterns were extracted for all monitoring stations, and they were compared to the features extracted based on the DAE. Consequently, it can be confirmed that the statistical consistency of the features extracted using CVAE is improved compared to DAE. Thus, we conclude that the proposed method may be useful in extracting a more accurate feature of GWL fluctuation pattern affected solely by hydraulic characteristics of the aquifer, which would be followed by the improved performance of the previously developed regression model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.