• Title/Summary/Keyword: DA $D_2$receptors

Search Result 26, Processing Time 0.021 seconds

Changes in the Central Dopaminergic Systems in the Streptozotocin-induced Diabetic Rats

  • Lim, D.K.;Lee, K.M.;Ho, I.K.
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.398-404
    • /
    • 1994
  • The behavioral response, depamine metabolism, and characteristics of dopamine subtypes after developing the hyperlycemia were studied in the striata of rats. In animals developed hyperglycemia, the on-set duration of cataleptic behavior responded to SCH 23390 injection was delayed abd shortened, respectively. However, the cataleptic response to spiperone occurred significantly earlier in on-set and prolonged in duration. Dopamine metabolites, dihydroxyphenylacetic acid (DDPAC) and homovanillic acid (HVA), were significantly reduced in teh striata of hyeprglycemic rats. However, level of DA was significantly increased. It is noted that the ratios of DOPAC and HVA to DA were decreased, suggesting decreased tumover of DA. The affinity of striatal D-1 receptors was significantly increased without changes in the number of binding sites, while the maximum binding number of D-2 recptors was significantly increased without affecting its affinity in the diabetic rats. These results indicate that the dopaminergic activity in striatia was altered in hyperglycemic rats. Furthermore, it suggests that the upregulation of dopamine receptors might be due to the decreased dopamine matabolism.

  • PDF

Influence of Caffeine on Dopamine D$_1$and D$_2$Receptor mRNAs Expression in Rat Brain (도파민 D$_1$과 D$_2$수용체 mRNAs의 발현에 미치는 카페인의 영향)

  • 김근양;신지혜;김명옥
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The caffeine intake cause a local or wide ranges of convulsion and it is associated with release of dopamine (DA) receptors into the brain striatum. However, the effect of caffeine addiction on expression of DA receptors gene in the rat caudate-putamen (CPu), nucleus accumbens (NAc), and olfactory tubercle (OTu) has not been elucidated. In this study, we examined the influence of caffeine addiction on DA D $_1$and D$_2$receptor mRNAs after the treatment of caffeine for four weeks. Using the specific antisense ribo-probes for DA D$_1$and D$_2$receptor cDNAs, in situ hybridization was performed on the CPu, NAc, and OTu of the adult male Sprague Dawely rats. In caffeine-treated group, DA D$_1$and D$_2$receptor mRNAs were highly increased in CPu, NAc, and OTu. The expression density of DA D$_1$receptor mRNAs were 2.52${\pm}$1.40 (CPu), 2.78${\pm}$1.69 (NAc), and 3.91${\pm}$1.28 (OTu) in control group and 7.76${\pm}$2.09 (CPu), 4.2 ${\pm}$1.85 (NAc), and 8.21${\pm}$1.72 (OTu) in caffeine-treated group. The expression density of DA D$_2$receptor mRNA was 2.32${\pm}$1.52 (CPu), 2.63${\pm}$2.11 (NAc), and 3.61${\pm}$1.43 (OTu) in control group, and 6.41${\pm}$1.82 (CPu), 6.89${\pm}$1.32 (NAc), and 6.82${\pm}$1.18 (OTu) in caffeine-treated group. DA D$_1$receptor mRNA was higher expressed than DA D$_2$ receptor mRNA in CPu and NAc. These results suggest that caffeine reacts as a upregulator of the expression of DA D$_1$and D$_2$receptor mRNA among the neurotransmitters.

  • PDF

N-(4-[$^{18}F$]Fluoromethylbenzyl)spiperone : A Selective Radiotracer for In Vivo Studies of Dopamine $D_2$ Receptors (N-(4-[$^{18}F$Fluoromethylbenzyl)spiperone : 유력한 도파민 $D_2$ 수용체 선택성 방사성리간드)

  • Kim, Sang-Eun;Choe, Yearn-Seong;Chi, Dae-Yoon;Lee, Kyung-Han;Choi, Yong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.421-426
    • /
    • 1997
  • We evaluated the in vivo kinetics, distribution, and pharmacology of N-(4-[$^{18}F$]fluoromethylbenzyl)spiperone ([$^{18}F$]FMBS), a newly developed derivative of spiperone, as a potentially more selective radiotracer for the dopamine (DA) $D_2$ receptors. Mice received 1.9-3.7 MBq (1.8-3.6 nmol/kg) of [$^{18}F$]FMBS by tail vein injection. The time course and regional distribution of the tracer in brain were assessed. Blocking studies were carried out by intravenously preinjecting DA $D_2$ receptor blockers (spiperone, butaclamol) as well as drugs with high affinity for DA $D_1$ (SCH 23390), DA transporter (GBR 12909), and serotonin $S_2$ ($5-HT_2$) (ketanserin) sites. After injection of the tracer, the radioactivity in striatum increased steadily over time, resulting in a striatal-to-cerebellar ratio of 4.8 at 120 min postinjection. By contrast, the radioactivity in cerebellum, frontal cortex, and remaining cortex washed out rapidly. Preinjection of unlabeled FMBS (1 mg/kg) and spiperone (1 mg/kg) reduced [$^{18}F$]FMBS striatal-to-cerebellar ratio by 41% and 80%, respectively. (+)-Butaclamol (1 mg/kg) blocked 80% of the striatal [$^{18}F$]FMBS binding, while (-)-butaclamol (1 mg/kg) did not. Preinjection of SCH 23390 (1 mg/kg) and GBR 12909 (5 mg/kg) had no significant effect on [$^{18}F$]FMBS binding. Ketanserin (1 mg/kg), a ligand for the $5-HT_2$ receptors, did not cause significant inhibition either in striatum, in frontal cortex, or the remaining cortex. The results demonstrate that [$^{18}F$]FMBS labels DA $D_2$ receptors selectively in vivo in the mouse brain. It may hold promise as a selective radiotracer for studying DA $D_2$ receptors in vivo by PET.

  • PDF

Dopamine signaling in food addiction: role of dopamine D2 receptors

  • Baik, Ja-Hyun
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.519-526
    • /
    • 2013
  • Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction.

Effect of Intracerebroventricular Administration of Ethylcholine Aziridinium (AF64A) on Dopaminergic Nervous Sys-tems

  • Lim, Dong-Koo;Ma, Young;Yi, Eunyoung
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • Changes in dopaminergic activities were investigated after the intracerebroventricular (icv) administration of ethylcholine aziridium (AF64A) in rats. The levels of dopamine (DA) and metabolites, the activities of tyrosine hydroxylase (TH) and monoamine oxidase (MAO), and the specific binding sites of dopamine receptros in striata, hippocampus, and frontal cortex were assessed 6 days after the AF64A treatment with 3 nmol/each ventrcle. In frontal cortex, the levels of DA and metabolities were significantly decreased without changes in metabolites/DA ratios in the AF64A-treated groups. In contrast, the ratios of metabolites/DA were significantly decreased in striatum and hippocampus in the AF64A treatment. The activity of TH in frontal cortex was significantly decreased. However, that in other areas was not changed. Also the activity of MAO-A was not changed in the studied brain regions. However, the activity of MAO-B in striatum was significantly increased with no change in other areas. The specific binding sites of dopamine D1 and D2 receptors were increased in AF64A-treated frontal cortex. However, those were not changed in striatum and hippocampus except the small decreased specific binding sites of dopamine D-1 receptors in striatum after AF64A treatment. These results indicate that the dopaminergic activity was altered in AF64A treatment. Furthermore, it suggest that the decreased dopaminergic activities in each brain regions might be differently affected by AF64A treatment.

  • PDF

Synaptic Concentration of Dopamine in Rat Striatal Slices in Relationship to $[^3H]$Raclopride Binding to the Dopamine $D_2$ Receptor

  • Park, Mi-Hwa;Park, Eun-Hee
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.360-366
    • /
    • 2000
  • The in vivo binding of dopamine (DA) radioligands to $D_2$receptors can be affected by competition with endogenous dopamine. In the present study, we used a brain slice preparation that provides more controlled conditions than in vivo preparations in order to examine the relationship between synaptic DA and the binding of [$^3H$] raclopride to $D_2$receptors. We also estimated the synaptic DA concentration in rat striatal slices by determining the changes in [$^3H$] raclopride binding. To correlate the changes in [$^3$H]raclopride binding with the concentration of synaptic DA, the kinetic parameters were determined. [$^3H$] Raclopride reached equilibrium binding conditions within two hours. The K value for DA in inhibiting [$^3$H]raclopride binding was about 2.2 nM. The increase in synaptic DA evoked by electrical stimulation decreased the striatal binding of [$^3H$] raclopride in a frequency-dependent manner. Increases in the DA concentration evoked by amphetamine (AMPH) or cocaine decreased [$^3H$] raclopride binding by 74% or 20%, respectively, corresponding to increases in the synaptic DA concentrations of 1.6 nM or 0.6 nM, respectively. Pargyline also decreased [$^3H$] raclopride binding by 36%corresponding at a concentration of 1.2 nM. In contrast, the depletion of synaptic DA by $\alpha$-methyl-p-tyrosine ($\alpha$-MpT) increased the specific binding of [$^3H$] raclopride by 43%when the DA concentration was decreased to 0.7 nM. The changes in the DA concentration at the synapse were responsible for the changes in the striatal binding of [$^3H$] raclopride. The values calculated in this study may therefore approximate the changes in the synaptic DA concentration in rat striatal slices following manipulation.

  • PDF

Time-Course of [$^3H$]Spiperone Binding and Dopamine Metabolism in the Rat Striatum after Withdrawal from Haloperidol Ttreatment (Haloperidol 투여후 금단기간에 따른 백서 선조체의 [$^3H$]Spiperone 결합 및 Dopamine 대사물질의 변화)

  • Lee, Jung-Yong;Kong, Bo-Geum;Kim, Yong-Kwan;Jung, Chung;Kim, Sun-Hee;Kim, Young-Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 1996
  • The effects of 3 week treatment with haloperidol(2mg/kg/day, i.p.) on dopamine(DA) D2 receptor and DA metabolism in rat striata were studied at various time points after withdrawal from the drug treatment. Striatal DA D2 receptors were characterized with the radioligand 0.5nM [$^3H$]Spiperone. Dopamine(DA), homovanillic acid(HVA), 3,4-dihydroxyphenyl acetic acid(DOPAC) in rat striatum were measured with the high performance liquid chromatography. Drug withdrawal for 1 week induced significant increase in the number of D2 receptor in striatum after withdrawal for 1 week(p<0.05), and then this change was restored to control level during the withdrawal time of 2 and 4 weeks. There was no difference in striatal concentrations of DA and its metabolites among the groups. In conclusion, one-week withdrawal from chronic haloperidol treatment induced DA D2 receptor supersensitivity in the striatum, and that was normalized rapidly. Though this adaptive change in DA receptors, it may not affect the metabolism of DA in striatum.

  • PDF

Proliferation of Dopamine $D_2$-Like Receptors after Treatment with Low Dose Haloperidol in Rat Brain (저용량의 Haloperidol투여에 의해 유발된 백서 뇌내 Dopamine $D_2$양 수용체증식)

  • Kim, Hwang-Jin;Hahn, Kyu-Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.240-244
    • /
    • 1996
  • The effects of chronic treatment with haloperidol on the binding capacities of dopamine(DA) $D_2$-like receptor were investigated in rat striatum and olfactory tubercle. The authors tried to confirm the dose-response effects with usual dose and low dose haloperidol. Rats were treated with haloperidol(0.05, 0.15, 0.5, 1.5mg/kg/day in drinking water) for four weeks. Saturation analysis of the binding of [$^3H$]spiperone to striatal membranes showed that the haloperidol treatment(0.05, 0.5, 1.5mg/kg) induced significant proliferation. The changes of dissociation constant(Kd) were not significant in striatum. The maximal binding density(Bmax) and Kd increased remarkably following the treatment with usual dose haloperidol (1.5mg/kg) in olfactory tubercle. Although there was increasing trend other the treatment with low dose haloperidol, the change of Bmax was not significant statistically. The present findings indicate that low dose haloperidol induces the proliferation of DA $D_2$-like receptor in striatum and interact with the dopaminergic transmission which might underlie the antipsychotic effect. This finding may support the recent clinical suggestion on the low dose strategy in the treatment of schizophrenia.

  • PDF

Comparative Studies of Molecular Mechanisms of Dopamine D2 and D3 Receptors for the Activation of Extracellular Signal Regulated Kinase 1/2 in HEK-293 cells

  • Cheong, Da-Woon;Cho, Choon-Sil;Kim, Hyun-Ju;Kim, Kyeong-Man
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.270.2-270.2
    • /
    • 2002
  • Dopamine D2 and D3 receptors (D2R and D3R) belong to pharmacological D2R family and share similar structural and functional characteristics. Elucidation of their differential functional characteristics is important for understanding their roles in brain. ERK1/2 was chosen as an example of signaling component of D2R and D3R and systemic studies were conducted to understand the regulatory mechanisms on ERK1/2 activation. (omitted)

  • PDF

Influence of Intracerebroventricular Domperidone on Rabbit Renal Function (가토 신장기능에 미치는 뇌실내 Domperidone의 영향)

  • Kim, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.135-145
    • /
    • 1988
  • Dopamine when given icv induces antidiuresis along with transient natriuretic tendency, and it has been suggested that both subtypes of central dopamine receptors may influence renal function differentially. This study was undertaken to delineate the role of central $D_2$ receptors employing domperidone (DOM), a selective $D_2$ antagonist. DOM icv elicited antidiuresis and antinatriuresis in doses ranging from 15 to $135{\mu}g/kg$. GFR and RPF as well as sodium excretion decreased. Systemic blood pressure increased slightly. Intravenous DOM did not elicit significant changes in sodium excretion. Denervation of the kidney abolished the hemodynamic change induced by icv DOM, but sodium excretion decreased on both innervated and denervated kidneys. No diuretic tendency was uncovered by the denervation. Dopamine, $150{\mu}g/kg$ icv, produced antidiuresis along with decreases in hemodynamics. These effects were not affected by DOM-pretreatment, and no natriuretic tendency was unveiled. Bromocriptine, a $D_2$ receptor agonist, $200{\mu}g/kg$ icv, elicited marked diuresis and natriuresis, which were completely abolished by DOM-pretreatment. Apomorphine, another prototype of $D_2$ agonist, $150{\mu}g/kg$ icv, produced diuresis and natrituresis with increases in renal hemdoynamics, followed by decreases in all parameters. DOM-pretreatment did not affect the renal hemodynamic effects, wherease the increases in urine flow and sodium excretion were markedly reduced by DOM, Present study suggests that central $200{\mu}g/kg$ receptors mediate natriuretic and diuretic influence to the kidney, possibly through mediation of natriuretic humoral factor, and provide further evidence supporting the hypothesis that central $200{\mu}g/kg$ receptors mediate antidiuretic influence via nerve pathway, whereas natriuresis are brought about through mediation of central $200{\mu}g/kg$ receptors.

  • PDF