• 제목/요약/키워드: D2 regulation

검색결과 772건 처리시간 0.024초

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Up-regulation of Early Growth Response-1 Expression by Endoplasmic Reticulum Stress

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제13권2호
    • /
    • pp.157-160
    • /
    • 2007
  • Endoplasmic reticulum (ER) plays formation of disulfide bonds and proper folding of secretory proteins. Cellular responses to ER stress enhances the stress-activated kinase pathway and the induces a lot of immediate-early genes. Among of them, the early growth response-1 (Egr-1), a transcription factor, which plays an important role in cell growth, development, differentiation, apoptosis and various types of injury. For that reason, we have tested the expression of Egr-1 against ER stress inducible drugs (tunicamycin, DTT, A23187 and BFA) to understand what kind of aspect occurred by ER stresses.

  • PDF

Kaempferol-3-O-${\beta}$-D-sophoroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 억제를 통한 LPS에 의해 유도되는 iNOS, COX-2 및 cytokine들의 발현 저해효과 (Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-O-${\beta}$-D-sophoroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells)

  • 박승재;신지선;조웅;조영욱;안은미;백남인;이경태
    • 생약학회지
    • /
    • 제39권2호
    • /
    • pp.95-103
    • /
    • 2008
  • In the present study, we investigated the anti-inflammatory effects by kaempferol-3-O-${\beta}$-D-sophoroside (KS) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line compared with kaempferol. KS significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, KS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6) were also reduced by KS. Moreover, KS attenuated the LPS-induced activation of nuclear factor-kappa B ($NF{-\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by KS are achieved by the downregulation of $NF{-\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

The Effect of Glycolic Acid on Human Dermal Fibroblasts: Increased Collagen Synthesis and Inhibition of MMP-2/9

  • Park, Ki-Sook;Kim, Soo-Kyoum;Lim, Sae-Hwan;Kim, Yun-Young;Park, Young-Ju;Lee, Seung-Soo;Lee, Su-Hvun;Chang, Tae-Hyun;Son, Youna-Sook
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.519-523
    • /
    • 2003
  • Alpha hydroxy acid (AHA) includes a group of organic acids found in natural foods such as sugarcane (glycolic acid), milk (lactic acid), apples (malic acid) and oranges (citric acid). Earlier studies demonstrated the effect of AHAs on the skin by diminishing the adhesiveness of the corneal layer and increasing the viable epidermal thickness. Recent data suggest that AHAs have some effects on the dermal component of skin and even affect the aging process of the skin. A previous study revealed increased collagen production by treatment with glycolic acid among AHAs in vitro. However, the mechanism of the regulation of collagen production by glycolic acid was unclear. In present study, we tried to demonstrate the effect of glycolic acid on human dermal fibroblasts and to unveil the mechanism of regulation of collagen production by glycolic acid in human dermal fibroblasts: proliferation of fibroblasts and collagen synthesis and degradation by collagenases in fibroblasts. Our results suggested that glycolic acid had no effect on proliferation and cytotoxicity of adult human dermal fibroblasts. However, glycolic acid not only induced the increase of the collagen synthesis in human dermal fibroblasts at lower concentration than 0.1 % but also inhibited MMP-2 activity of human dermal fibroblast in the range between 0.01 and 0.4% and MMP-9 activity of human dermal fibroblast in the range between 0.06 and 0.09%. In summary, our results suggest that glycolic acid may increase wrinkle reduction partially by both increase in collagen synthesis and decrease in collagen degradation.

  • PDF

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제23권4호
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

Functional Anaylsis of sprD Gene Encoding Streptomyces griseus Protease D(SGPD) in Streptomyces griseus

  • Choi Si-Sun;Kim Joung-Hoon;Kim Jong-Hee;Kang Dae-Kyung;Kang Sang-Soon;Hong Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.312-317
    • /
    • 2006
  • The chromosomal sprD gene encoding Streptomyces griseus protease D (SGPD), a chymotrypsin-like protease, was disrupted in Streptomyces griseus by insertion of the neomysin-resistance gene. The production of chymotrypsin activity of sprD disruptant was not completely abolished, but delayed by 24 h, compared with that of wild-type strain. The aerial mycelial formation of sprD disruptant was retarded, and specifically the formation of spores was not observed in the central region of colonies. However, normal morphological development into spores was observed in the marginal region of colonies. In addition, the production of yellow pigment that might be dependent on A-factor was also decreased in the sprD disruptant, compared with that of the wild-type strain. Introduction of the sprD gene, which was placed on a high copy-numbered plasmid into S. griseus ${\Delta}sprD$, partially restored the ability of morphological development, and a significant level of sporulation was observed. When the overexpression vector for sprD, pWHM3-D, was introduced in S. griseus, there was no significant change in the chymotrypsin activity or colonial morphology, in contrast to Streptomyces lividans, indicating the presence of a tight regulation system for the overexpression of the sprD gene in S. griseus.

Hath1 Inhibits Proliferation of Colon Cancer Cells Probably Through Up-regulating Expression of Muc2 and p27 and Down-regulating Expression of Cyclin D1

  • Zhu, Dai-Hua;Niu, Bai-Lin;Du, Hui-Min;Ren, Ke;Sun, Jian-Ming;Gong, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6349-6355
    • /
    • 2012
  • Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

분비나무 줄기 수피 추출물에 의한 HeLa Cell Line의 증식억제 효과와 RAW264.7 세포에서 Lipopolysaccharide에 의해 유도된 Nitric Oxide 생성 저해효과 (Inhibitory Effect on the Lipopolysaccharide-Induced Nitric Oxide Formation in RAW264.7 and on the Proliferation of HeLa Cell Lines by the Stem Bark Extracts of Abies nephrolepis)

  • 배기은;정한수;김동섭;최영웅;김영숙;김영균
    • 생약학회지
    • /
    • 제40권1호
    • /
    • pp.77-81
    • /
    • 2009
  • Abies nephrolepis(Pinaceae) extracts were tested for determined immune system regulating activity based on antiinflammatory activity, antioxidant activity and anti-proliferative effect on HeLa cell line. The A. nephrolepis extracts increased dose-dependently anti-proliferation of HeLa cell line. The DM fraction of the extracts having anti-proliferatative effects of HeLa cell line was fractionalized four subfractions($D1{\sim}D4$). Inflammation-induced NO production was inhibited by D2 and D4 in LPS-activated RAW264.7 macrophages. And also, this fractions showed antioxidant activity examined by DPPH radical scavenging effects. These results suggest that the potential use of DM fraction of A. nephrolepis in chemoprevention and regulation overproduction of NO on pathogenic conditions. The mechanism of the inflammatory effects, however, must be evaluated through various parameters in the induction cascade of NO production.

Crystal Structure of p97 N-D1 Hexamer in Complex with p47 UBX Domain

  • Thang Quyet Nguyen;Wonchull Kang
    • 대한화학회지
    • /
    • 제68권1호
    • /
    • pp.25-31
    • /
    • 2024
  • The p97 adenosine triphosphatase is a key player in protein homeostasis, responsible for unfolding ubiquitylated substrates. It engages with various adaptor proteins through its N-terminal domain, with the p97-p47 complex attracting particular attention for its involvement in membrane remodeling. Although the structures of p97 in complex with the Ubiquitin regulatory X (UBX) domain from various adaptors have been reported, the stoichiometry is conflicting. Here, we report the crystal structure of the p97 N-D1 hexamer in complex with the p47 UBX domain at a resolution of 2.7 Å. The structure reveals a stoichiometry of 6:6 between the p97 N-D1 and the p47 UBX domain. These findings provide valuable insights into the binding stoichiometry of p97 N-D1 and p47 UBX domain, which are crucial for understanding the role of p97 and adaptor proteins in cellular processes such as the ubiquitin-proteasome pathway, membrane fusion, and cell cycle regulation.

ᴅ-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

  • Kim, Eunju;Kim, Yoo-Sun;Kim, Kyung-Mi;Jung, Sangwon;Yoo, Sang-Ho;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제10권1호
    • /
    • pp.11-18
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. $\small{D}$-xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of $\small{D}$-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS: Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with $\small{D}$-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with $\small{D}$-xylose. These groups were maintained for two weeks. The effects of $\small{D}$-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic ${\beta}$-cells were analyzed. RESULTS: In vivo, $\small{D}$-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. $\small{D}$-xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of $\small{D}$-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with $\small{D}$-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS: In this study, $\small{D}$-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, $\small{D}$-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by ${\beta}$-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D.