• Title/Summary/Keyword: D.1 filter

Search Result 1,297, Processing Time 0.031 seconds

High Power Cavity Type Tunable Filter Using Switch for 1.5 GHz Band (Switch를 이용한 1.5 GHz 대역 고출력 Cavity 기반 Tunable Filter)

  • Ahn, Sehoon;Lee, Minho;Park, Jongcheol;Jeong, Gyetaek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, the tunable filter based on high power cavity using mechanical switch for 1.5 GHz band is presented. The LPF is inserted to eliminate the spurious wave, coupler is embeded to extract the output power, and then the tunable filter system is configured using mechanical switch. The LPF obtains attenuation over 40 dB between 4 GHz and 12.75 GHz, Coupler is satisfied with coupling value 40 dB and coupling isolation over 55 dB. The tunable filter system using mechanical switch obtains insertion loss 0.88 dB at bypass mode between 1,495.9 MHz and 1,510. 9 MHz, 3.29 dB at fil mode between 1,495.9 MHz and 1,500.9 MHz. It is also satisfied with output power of 132 W at the center frequency 1,498.4 MHz, and switching time below 10 ms.

A Study on QP Method and Two Dimensional FIR Elliptic Filter Design with McClellan Transform (QP 방법과 McClellan 변환을 이용한 2차원 FIR Elliptic 필터 설계에 관한 연구)

  • 김남수;이상준;김남호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.268-271
    • /
    • 2003
  • There are several methods for the design of 2D filter. Notable among them is McClellan transform method. This transform allows us to obtain a high order 2D FIR filter through mapping the 1D frequency points of a 1D prototype FIR filter onto 2D frequency contours. We design 2D filter using this transform. Then we notice for mapping deviation of the 2D filter. In this paper, Quadratic programming (QP) method allows us to obtain coefficients of McClellan transform. Then we compare deviation of QP method with least-squares(LS) method. Elliptic filter is used for comparison. The optimal cutoff frequencies of a 1D filter are obtained directly from the QP method. Also several problem of LS method are solved.

  • PDF

Development of High Frequency Active Filter for Multimedia (멀티미디어용 고주파 Active Filter개발에 관한 연구)

  • 윤종남
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The purpose of this work is to develop High-Frequency Active Filter and super-miniaturation technology(SMD Type) of Filter which are essential for the key R/F Microwave components in the Mobile telecommunication system. The cut-off frequency of high frequency active filter for multimedia is 2.5 MHz, the gain is 0.5dB at 100 kHz, the passband ripple is 1.2 dB max at 100 kHz~2.0 kHz, GDT is 60 nsec at 100 kHz-2.0 MHz, the attenuation is 40 dB min at 3.75 MHz.

  • PDF

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Bird sounds classification by combining PNCC and robust Mel-log filter bank features (PNCC와 robust Mel-log filter bank 특징을 결합한 조류 울음소리 분류)

  • Badi, Alzahra;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • In this paper, combining features is proposed as a way to enhance the classification accuracy of sounds under noisy environments using the CNN (Convolutional Neural Network) structure. A robust log Mel-filter bank using Wiener filter and PNCCs (Power Normalized Cepstral Coefficients) are extracted to form a 2-dimensional feature that is used as input to the CNN structure. An ebird database is used to classify 43 types of bird species in their natural environment. To evaluate the performance of the combined features under noisy environments, the database is augmented with 3 types of noise under 4 different SNRs (Signal to Noise Ratios) (20 dB, 10 dB, 5 dB, 0 dB). The combined feature is compared to the log Mel-filter bank with and without incorporating the Wiener filter and the PNCCs. The combined feature is shown to outperform the other mentioned features under clean environments with a 1.34 % increase in overall average accuracy. Additionally, the accuracy under noisy environments at the 4 SNR levels is increased by 1.06 % and 0.65 % for shop and schoolyard noise backgrounds, respectively.

Double-Sharpened Decimation Filter Employing a Pre-droop Compensator for Multistandard Wireless Applications

  • Jeong, Chan-Yong;Min, Young-Jae;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • This paper presents a double-sharpened decimation filter based on the application of a Kaiser and Hamming sharpening technique for multistandard wireless systems. The proposed double-sharpened decimation filter uses a pre-droop compensator which improves the passband response of a conventional cascaded integrator-comb filter so that it provides an efficient sharpening performance at half-speed with comparison to conventional sharpened filters. In this paper, the passband droop characteristics with compensation provides -1.6 dB for 1.25 MHz, -1.4 dB for 2.5 MHz, -1.3 dB for 5 MHz, and -1.0 dB for 10 MHz bandwidths, respectively. These results demonstrate that the proposed double-sharpened decimation filter is suitable for multistandard wireless applications.

Bandpass Filter Using Dual-mode Resonator with Radial Stub (래디얼 스터브를 통해 구현된 이중 모드 공진기를 이용한 대역 통과 필터)

  • Yun, Tae-Soon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.74-78
    • /
    • 2011
  • In this paper, the bandpass filter for ITS system of 5.8 GHz is proposed by using the dual-mode resonator with the radial stub. As alternating the open stub with the radial stub, the size of the dual mode resonator can be reduced about 39.6% and the out-of-band characteristics of the bandpass filter using dual mode resonator can be enhanced from 19.4 dB to 29.1 dB by using the stub of $6.9{\Omega}$ i.e. realized by parallel two radial stubs with $60^{\circ}$ angle. The fabricated bnadpass filter using the dual mode resonator has the center frequency of 5.72 GHz with the fractional bandwidth of 4.1%. Also, the filter has the insertion loss and return loss of 1.79 dB and 19.4 dB, respectively.

Single-Channel Speech Separation Using the Time-Frequency Smoothed Soft Mask Filter (시간-주파수 스무딩이 적용된 소프트 마스크 필터를 이용한 단일 채널 음성 분리)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.67
    • /
    • pp.195-216
    • /
    • 2008
  • This paper addresses the problem of single-channel speech separation to extract the speech signal uttered by the speaker of interest from a mixture of speech signals. We propose to apply time-frequency smoothing to the existing statistical single-channel speech separation algorithms: The soft mask and the minimum-mean-square-error (MMSE) algorithms. In the proposed method, we use the two smoothing later. One is the uniform mask filter whose filter length is uniform at the time-Sequency domain, and the other is the met-scale filter whose filter length is met-scaled at the time domain. In our speech separation experiments, the uniform mask filter improves speaker-to-interference ratio (SIR) by 2.1dB and 1dB for the soft mask algorithm and the MMSE algorithm, respectively, whereas the mel-scale filter achieves 1.1dB and 0.8dB for the same algorithms.

  • PDF

A Compact LTCC Dual-Band WLAN Filter using Two Notch Resonators

  • Park, Jun-Hwan;Cheon, Seong-Jong;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.168-175
    • /
    • 2013
  • This paper presents compact dual-band WLAN filter and filter module. They were developed by embedding all of the passive lumped elements into a LTCC substrate. In order to reduce the size/volume of the filter and avoid EM parasitic couplings between the passive elements, the proposed filter was designed using a 3rd order Chebyshev circuit topology and J-inverter transformation technology. The 3rd order Chebyshev bandpass filter was firstly designed for the band-selection of the 802.11b and was then transformed using finite transmission zeros technologies. Finally, the dual-band filter was realized by adding two notch resonators to the 802.11b filter circuit for the band-selection of the 802.11a/g. The maximum insertion losses in the lower and higher passbands were better than 2.0 and 1.3 dB with minimum return losses of 15 and 14 dB, respectively. Furthermore, the filter was integrated with a diplexer to clearly split the signals between 2 and 5 GHz. The maximum insertion and minimum return losses of the fabricated module were 2.2 and 14 dB at 2.4 - 2.5 GHz, and 1.6 and 19 dB at 5.15 - 5.85 GHz, respectively. The overall volume of the fabricated filter was $2.7{\times}2.3{\times}0.59mm^3$.

Interference-filter-based stereoscopic 3D LCD

  • Simon, Arnold;Prager, M. G.;Schwarz, S.;Fritz, M.;Jorke, H.
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.24-27
    • /
    • 2010
  • A novel stereo 3D LCD for passive interference filter glasses is presented. A demonstrator based on a standard 120Hz LCD was set up. Stereoscopic image separation was realized in a time-sequential mode using a LED-based scanning backlight with two complementary spectra. A stereo brightness of 3 cd/$m^2$ and a channel separation of 30:1 were achieved.