• Title/Summary/Keyword: D. radiodurans

Search Result 20, Processing Time 0.033 seconds

Identification and Functional Analysis of RelA/SpoT Homolog (RSH) Genes in Deinococcus radiodurans

  • Wang, Jinhui;Tian, Ye;Zhou, Zhengfu;Zhang, Liwen;Zhang, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2106-2115
    • /
    • 2016
  • To identify the global effects of (p)ppGpp in the gram-positive bacterium Deinococcus radiodurans, which exhibits remarkable resistance to radiation and other stresses, RelA/SpoT homolog (RSHs) mutants were constructed by direct deletion mutagenesis. The results showed that RelA has both synthesis and hydrolysis domains of (p)ppGpp, whereas RelQ only synthesizes (p)ppGpp in D. radiodurans. The growth assay for mutants and complementation analysis revealed that deletion of relA and relQ sensitized the cells to $H_2O_2$, heat shock, and amino acid limitation. Comparative proteomic analysis revealed that the bifunctional RelA is involved in DNA repair, molecular chaperone functions, transcription, the tricarboxylic acid cycle, and metabolism, suggesting that relA maintains the cellular (p)ppGpp levels and plays a crucial role in oxidative resistance in D. radiodurans. The D. radiodurans relA and relQ genes are responsible for (p)ppGpp synthesis/hydrolysis and (p)ppGpp hydrolysis, respectively. (p)ppGpp integrates a general stress response with a targeted re-programming of gene regulation to allow bacteria to respond appropriately towards heat shock, oxidative stress, and starvation. This is the first identification of RelA and RelQ involvement in response to oxidative, heat shock, and starvation stresses in D. radiodurans, which further elucidates the remarkable resistance of this bacterium to stresses.

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes (방사성 폐기물의 생물정화를 위한 극한세균 데이노코쿠스 라디오두란스의 연구적 고찰)

  • Jeong, Sun-Wook;Choi, Yong Jun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • Increasing concerns on radioactive wastes have drawn much attention on the development of remediation technologies. Massive amounts of radioactive wastes generated from hospital and nuclear power plants were exposed to our environment. Although physicochemical removal methods were developed, an eco-friendly remediation method has not yet been demonstrated. Recently, an extremophilic bacterium has received much attention due to their extraordinary characteristics. Among them, Deinococcus radiodurans (D. radiodurans) strain was regarded as the best host organism for the removal of radioactive heavy metals and radionuclides, because of their superb characteristics like tolerance against the high level of radioactivity. In this article, we briefly introduced the extraordinary nature of D. radiodurans and also discussed the potential use of D. radiodurans strain for the removal of radioactive wastes.

Characterization of Single Stranded DNA-Dependent ATPase Activities of Deinococcus radiodurans RecA Protein (Deinococcus radiodurans RecA 단백질의 외가닥 DNA-의존성 ATPase 활성 분석)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.250-255
    • /
    • 2007
  • The RecA protein of Deinococcus radiodurans is essential for the extreme radiation resistance of this organism. The central steps involved in recombinational DNA repair require DNA-dependent ATP hydrolysis by recA protein. Key feature of RecA protein-mediated activities is the interactions with ssDNA and dsDNA. The ssDNA is the site where RecA protein filament formation nucleates and where initiation of DNA strand exchange takes place. The effect of sequence heterogeneity of ssDNA was examined in this experiment. The rate of homopolymeric synthetic ssDNA-dependent ATP hydrolysis was constant or nearly so over a broader range of pHs. For poly(dT)-dependent ATP or dATP hydrolysis, rates were generally faster, with a broader optimum between pH 7.0 and 8.0. Activities of RecA protein were affected by the ionic environment. The ATPase activity was shown to have different sensitivity to anionic species. The presence of glutamate seemed to slimulate the hydrolytic activity. Dr RecA protein was shown to require $Mg^{2+}$ ion greater than 2 mM for binding to etheno ssDNA and the binding stoichiometry of 3 nucleotide for RecA protein monomer.

Analysis of Double Stranded DNA-dependent Activities of Deinococcus radiodurans RecA Protein

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.

Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity

  • Joe, Min-Ho;Jung, Sun-Wook;Im, Seong-Hun;Lim, Sang-Yong;Song, Hyun-Pa;Kwon, Oh-Suk;Kim, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.438-447
    • /
    • 2011
  • Deinococcus radiodurans is extremely resistant to various genotoxic conditions and chemicals. In this study, we characterized the effect of a sublethal concentration (100 ${\mu}M$) of cadmium (Cd) on D. radiodurans using a whole-genome DNA microarray. Time-course global gene expression profiling showed that 1,505 genes out of 3,116 total ORFs were differentially expressed more than 2-fold in response to Cd treatment for at least one timepoint. The majority of the upregulated genes are related to iron uptake, cysteine biosynthesis, protein disulfide stress, and various types of DNA repair systems. The enhanced upregulation of genes involved in cysteine biosynthesis and disulfide stress indicate that Cd has a high affinity for sulfur compounds. Provocation of iron deficiency and growth resumption of Cd-treated cells by iron supplementation also indicates that CdS forms in iron-sulfur-containing proteins such as the [Fe-S] cluster. Induction of base excision, mismatch, and recombinational repair systems indicates that various types of DNA damage, especially base excision, were enhanced by Cd. Exposure to sublethal Cd stress reduces the growth rate, and many of the downregulated genes are related to cell growth, including biosynthesis of cell membrane, translation, and transcription. The differential expression of 52 regulatory genes suggests a dynamic operation of complex regulatory networks by Cd-induced stress. These results demonstrate the effect of Cd exposure on D. radiodurans and how the related genes are expressed by this stress.

Enhancement of Lysine Production in Recombinant Corynebacterium glutamicum through Expression of Deinococcus radiodurans pprM and dr1558 Genes (Deinococcus radiodurans 유래 DR1558과 PprM에 의한 Corynebacterium glutamicum의 라이신 생산 향상 연구)

  • Kim, Su-mi;Lim, Sangyong;Park, Si Jae;Joo, Jeong Chan;Choi, Jong-il
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.271-275
    • /
    • 2017
  • The expression of Deinococcus radiodurans dr1558 and pprM genes was examined for enhanced lysine production in recombinant Corynebacterium glutamicum. These genes are known to confer high tolerance to pH and osmotic shock in Escherichia coli. D. radiodurans dr1558 and pprM genes were expressed in C. glutamicum by using 6 synthetic promoters of different strengths, to evaluate the effect of expression efficiency on lysine production. Recombinant C. glutamicum expressing DR1558 under the L26 and I64 promoters showed higher lysine production than that expressing DR1558 under other promoters. Similarly, recombinant C. glutamicum expressing PprM under same promoters (L26 and I64) showed a higher increase in lysine production compared to that expressing PprM under other promoters. In the absence of $CaCO_3$ in the medium, the expression of DR1558 or PprM also increased lysine concentration in C. glutamicum depending on the promoter used. Together, these results suggest that genes involved in radiation tolerance in D. radiodurans can be used to enhance production of amino acids and their derivatives.

Enhanced Lycopene Production by UV-C Irradiation in Radiation-Resistant Deinococcus radiodurans R1

  • Kang, Chang Keun;Yang, Jung Eun;Park, Hae Woong;Choi, Yong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1937-1943
    • /
    • 2020
  • Although classical metabolic engineering strategies have succeeded in developing microbial strains capable of producing desired bioproducts, metabolic imbalance resulting from extensive genetic manipulation often leads to decreased productivity. Thus, abiotic strategies for improving microbial production performance can be an alternative to overcome drawbacks arising from intensive metabolic engineering. Herein, we report a promising abiotic method for enhancing lycopene production by UV-C irradiation using a radiation-resistant ΔcrtLm/crtB+dxs+ Deinococcus radiodurans R1 strain. First, the onset of UV irradiation was determined through analysis of the expression of 11 genes mainly involved in the carotenoid biosynthetic pathway in the ΔcrtLm/crtB+dxs+ D. radiodurans R1 strain. Second, the effects of different UV wavelengths (UV-A, UV-B, and UV-C) on lycopene production were investigated. UV-C irradiation induced the highest production, resulting in a 69.9% increase in lycopene content [64.2 ± 3.2 mg/g dry cell weight (DCW)]. Extended UV-C irradiation further enhanced lycopene content up to 73.9 ± 2.3 mg/g DCW, a 95.5% increase compared to production without UV-C irradiation (37.8 ± 0.7 mg/g DCW).

Metabolic Engineering of Deinococcus radiodurans for the Production of Phytoene

  • Jeong, Sun-Wook;Kang, Chang Keun;Choi, Yong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1691-1699
    • /
    • 2018
  • A metabolically-engineered Deinococcus radiodurans R1 strain capable of producing phytoene, a colorless $C_{40}$ carotenoid and a promising antioxidant, has been developed. To make this base strain, first, the crtI gene encoding phytoene desaturase was deleted to block the conversion of phytoene to other carotenoids such as lycopene and ${\gamma}$-carotene. This engineered strain produced $0.413{\pm}0.023mg/l$ of phytoene from 10 g/l of fructose. Further enhanced production of phytoene up to $4.46{\pm}0.19mg/l$ was achieved by overexpressing the crtB gene encoding phytoene synthase and the dxs genes encoding 1-deoxy-$\text\tiny{D}$-xylulose-5-phosphate synthase gene, and by deleting the crtD gene. High cell-density culture of our final engineered strain allowed production of $10.3{\pm}0.85mg/l$ of phytoene with the yield and productivity of $1.04{\pm}0.05mg/g$ and $0.143{\pm}0.012mg/l/h$, respectively, from 10 g/l of fructose. Furthermore, the antioxidant potential of phytoene produced by the final engineered strain was confirmed by in vitro DPPH radical-scavenging assay.

DNA-Independent ATPase Activity of Deinococcus radiodurans RecA Protein Is Activated by High Salt (고농도 염에 의한 Deinococcus radiodurans RecA 단백질의 DNA 비의존성 ATPase 역가의 활성화)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • Deinococcus radiodurans RecA protein, when bound to DNA, exhibits a DNA-dependent ATPase. In the absence of DNA, the rate of RecA protein-promoted ATP hydrolysis drops 1,000-fold under the physiological concentrations of salt. This DNA-independent activity can be stimulated to levels approximating those observed with DNA by adding high concentrations (approximately 1.6 M) of a wide variety of salts. This effect was characterized by varying salt concentration and comparing the effects of different ion types. The higher concentrations of salt stimulated the ATP hydrolysis by RecA protein in the absence of DNA. At 1.6 M chloride, the observed stimulation showed the following cation trend $K^+{\geq}Na^+$ > $NH_4^+$ and the following anion sequence was observed: $glutamate^- \; > \; C1^- \;> \; acetate^-\; > \;PO_4^-$ at 1.6 M $K^+$. The catalytic properties of the salt-stimulated ATP hydrolysis reaction was optimal between pH 7.0 and 8.0, which was similar to the double stran nded DNA-dependent ATPase activities of Deinococcus radiodurans RecA protein. In the absence of DNA the active species for ATP hydrolysis by RecA protein was shown to be an aggregate of three RecA protein molecules.