• Title/Summary/Keyword: D-ribose

Search Result 109, Processing Time 0.028 seconds

Effect of Lycopus lucidus Trucz on Cell Growth of Human Breast Cancer Cells, MCF-7

  • Kim, Do-Yeon;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • Lycopus lucid us Turcz is well known as traditional Chinese medicine, and it has been shown to exhibit antiinflammatory, -allergic and -oxidative effect. However, its anti-cancer properties have not been examined yet. In this study, we investigated the effect of the methanol extract of Lycopus lucid us Turcz on anti-cancer effect in MCF-7 human breast cancer cells. Treatment of Lycopus lucidus Turcz extract induced apoptosis and inhibition of cell proliferation in dose- and time-dependent manner. Apoptosis in the MCF-7 cells was characterized with the changes in nuclear morphology; decrease of Bcl-2 and caspase-7 expression; and increase of cleaved poly ADP-ribose polymerase(PARP). Furthermore, treatment of Lycopus lucidus Turcz extract caused the down-regulation of cell cycle-related protein including, cdk4, cyclin D1 and E2F-1. These results suggest that Lycopus lucidus Turcz might have the therapeutic value against human breast cancer cells.

  • PDF

Inhibition of Glutamate-Induced Change in Mitochondrial Membrane Permeability in PC12 cells by 1-Methylated β-carbolines

  • Han, Eun-Sook;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.112-118
    • /
    • 2003
  • 1-Methylated $\beta$-carbolines (harmaline and harmalol) and antioxidants (N-acetylcysteine and ascorbate) reduced the loss of cell viability in differentiated PC 12 cells treated with 5 mM glutamate. $\beta$-Carbolines prevented the glutamate-induced decrease in mitochondrial membrane potential, cytochrome c release and caspase-3 activation in PC 12 cells. $\beta$-Carbolines reduced the formation of reactive oxygen species and depletion of glutathione due to glutamate in PC12 cells. $\beta$-Carbolines revealed a scavenging action on hydrogen peroxide and reduced the iron and EDTA-mediated degradation of 2-deoxy-D-ribose. The results suggest that I-methylated $\beta$-carbolines attenuate the cytotoxic effect of glutamate on PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.

Synthesis of (-)-Neplanocin A Analogues as Potential Antiviral Agents

  • Shin, Dae-Hong;Lee, Hyuk-Woo;Park, Sung-Soo;Kim, Joong-Hyup;Jeong, Lak-Shin;Chun, Moon-Woo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.302-309
    • /
    • 2000
  • Based on (-)-neplanocin A with the 5'-hydroxyl substituted with fluoro, azido, or amino group, the corresponding xylo- and arabino derivatives were synthesized from D-ribose using the Mit-sunobu reaction as a key step. None of the final nucleosides did show either significant antiviral activities or cytotoxicities.

  • PDF

Fermentation Properties of Amylase Activity and Added Rice Yogurt of Enterococcus faecium KHM-11 Isolated from Korean Human Milk (한국인 모유로부터 분리한 Enterococcus faecium KHM-11의 Amylase 활성과 쌀 첨가 요구르트의 특성)

  • Bae, Hyoung-Churl;Lee, Jo-Yoon;Renchinkhand, Gereltuya;Nam, Myoung-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.387-392
    • /
    • 2010
  • This studies were carried out to assess fermentation properties of amylase activity and added rice yogurt of Enterococcus faecium KHM-11 isolated from Korean human milk. The amylase activity of Enterococcus faecium KHM-11 was above 23 units. Characterization of carbohydrate fermentation of Enterococcus faecium KHM-11 has D-ribose, D-lactose, L-arabinose and starch. Titratable acidity and viable count of lactic acid bacteria of 4% rice yogurt was higher compared to the 0%. Therefore we were discussed Enterococcus faecium KHM-11 is suitable microorganism for fermented milk added rice powder. Hydrolysates of sugars of fermented milk with 4% rice powder cultured Enterococcus faecium KHM-11 were analyzed by TLC and HPLC. Hydrolysates of lactose and galactose were revealed and hydrolysates of glucose was not revealed in results of TLC and HPLC.

Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

  • Lee, Hye Min;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • Amygdalin, D-mandelonitrile-${\beta}$-D-glucoside-6-${\beta}$-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin ${\alpha}5$ may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms (미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환)

  • Kim, Yeong-Su;Kim, Sang Jin;Kang, Dong Wook;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1545-1553
    • /
    • 2018
  • The International Society of Rare Sugars (ISRS) defines rare sugars as monosaccharides and their derivatives that rarely occur in nature. Rare sugars have recently received much attention because of their many uses including low-calorie sweeteners, bulking agents, and antioxidants, and their various applications including as immunosuppressants in allogeneic rat liver transplantation, as potential inhibitors of various glycosidases and microbial growth, in ischemia-reperfusion injury repair in the rat liver, and in segmented neutrophil production without detrimental clinical effects. Because they rarely exist in nature, the production of rare sugars has been regarded as one of the most important research areas and, generally, they are produced by chemical synthesis. However, the production of rare sugars by bioconversion using enzymes from microorganisms has been receiving increased attention as an environmentally friendly alternative production method. In particular, D-allulose, D-allose, and D-tagatose are of interest as low-calorie sweeteners in various industries. To date, D-tagatose 3-epimerase, D-psicose 3-epimerase, and D-allulose 3-epimerase have been reported as D-allulose bioconversion enzymes, and L-rhamnose isomerase, Galactose 6-phosphate isomerase, and Ribose 5-phosphate isomerase have been identified as D-allose production enzymes. Elsewhere, D-tagatose has been produced by L-arabinose isomerase from various microorganisms. In this study, we report the production of D-allulose, D-allose, and D-tagatose by microorganism enzymes.

Platycodin D Induces Apoptosis, and Inhibits Adhesion, Migration and Invasion in HepG2 Hepatocellular Carcinoma Cells

  • Li, Ting;Xu, Wen-Shan;Wu, Guo-Sheng;Chen, Xiu-Ping;Wang, Yi-Tao;Lu, Jin-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1745-1749
    • /
    • 2014
  • Background: Platycodin D (PD), a triterpenoid saponin isolated from the Chinese medicinal herb Platycodonis radix, possesses anti-cancer effects in several cancer cell lines. The aim of this study was to evaluate its anticancer activities in hepatocellular carcinoma cells. Materials and Methods: MTT and colony formation assays were performed to evaluate cell proliferation, along with flow cytometry and Western blotting for apoptosis. Cell adhesion was tested by observing cellular morphology under a microscope, while the transwell assay was employed to investigate the cell migration and invasion. Results: PD concentration-dependently inhibited cell proliferation in both HepG2 and Hep3B cells, and significantly suppressed colony formation and induced apoptosis in HepG2 cells. The protein levels of cleaved poly ADP-ribose polymerase (PARP) and Bax were up-regulated while that of survivin was down-regulated after treatment with PD. Moreover, PD not only obviously suppressed the adhesion of HepG2 cells to Matrigel, but also remarkably depressed their migration and invasion induced by 12-O-tetradecanoylphorbol 13-acetate (TPA). Conclusions: PD presents anti-cancer potential in hepatocellular carcinoma cells via inducing apoptosis, and inhibiting cell adhesion, migration and invasion, indicating promising features as a lead compound for anti-cancer agent development.

Naringin Protects against Rotenone-induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Hak-Jae;Song, Jeong-Yoon;Park, Hae-Jeong;Park, Hyun-Kyung;Yun, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.281-285
    • /
    • 2009
  • Rotenone, a mitochondrial complex I inhibitor, can induce the pathological features of Parkinson's disease (PD). In the present study, naringin, a grapefruit flavonoid, inhibited rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We assessed cell death and apoptosis by measuring mitogen-activated protein kinase (MAPKs) and caspase (CASPs) activities and by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Naringin also blocked rotenone-induced phosphorylation of Jun NH2-terminal protein kinase (JNK) and P38, and prevented changes in B-cell CLL/lymphoma 2 (BCL2) and BCL2-associated X protein (BAX) expression levels. In addition, naringin reduced the enzyme activity of caspase 3 and cleavages of caspase 9, poly (ADP-ribose) polymerase (PARP), and caspase 3. These results suggest that naringin has a neuroprotective effect on rotenone-induced cell death in human neuroblastoma SH-SY5Y cells.

Docking and QSAR studies of PARP-1 Inhibitors (PARP-1 억제제의 Docking 및 QSAR 연구)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

Overexpression of p73 Enhances Cisplatin-Induced Apoptosis in HeLa Cells

  • Kim Keun-Cheol;Jung Chul-Soo;Choi Kyung-Hee
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2006
  • To examine a possible synergistic role for p73 and cisplatin (cis-diamminedichloroplatinum II) in HeLa cells with a nonfunctional p53 protein, we established stable HeLa/p73 clones using a tetracycline inducible eukaryotic expression vector. The HeLa/p73 clones were not characterized by changes in growth or morphology. Cell death analysis, however, indicated a greater sensitivity to cisplatin in the p73-overexpressed HeLa cells than determined for the noninduced HeLa cells. This increased sensitivity seems to affect an induction of a sub-G1 population as assessed from flow cytometry analysis. The increased sub-G1 population may, in turn, result from a reduction of cyclin D1 and B1 expression by cisplatin in the presence of p73. Hoechest staining indicated an increased number of dead cells in the p73-induced cells compared to the non-induced cells. Poly ADP-ribose polymerase (PARP) cleavage was shown to be distinct in the p73-overexpressed cells compared to non-induced cells, which suggests that p73 modulates the cisplatin-induced apoptosis. Therefore, a synergistic effect of p73 and cisplatin to induce apoptosis could lead to new treatment for some types of human cancers.