• Title/Summary/Keyword: D-ribose

Search Result 114, Processing Time 0.022 seconds

The Apoptosis-inducing Effect of Radix Aconiti Extract in HepG2 Human Hepatoma Cells (HepG2 간암세포에 대한 부자 추출물의 고사 유도 효과)

  • 권강범;김은경;정은실;심정섭;김강산;신병철;송용선;류도곤
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.33-40
    • /
    • 2004
  • Objective : This study investigated the apoptotic effect and its mechanism of Radix Aconiti (RA) extract and aconitine, which is a major constituent of RA, in HepG2 human hepatoma cells. Methods : We used MTT and DNA fragmentation assay to investigate cell viability and apoptotic effect on RA extract-treated HepG2 cells. In addition, to clarify the mechanism of RA extract-induced apoptosis, we applied caspase-3 enzyme activity assay and Western blotting method on poly-(ADP-ribose) polymerase (PARP) protein expression. Results : Treatment with RA extract resulted in the decrease of cell viability, and this effect was caused from apoptosis as confirmed by discontinuous fragmentation of DNA in HepG2 cells, but aconitine did not. Also, RA extract-treated HepG2 cells induced the activation of caspase-3 enzyme activity in time- and dose-dependent manners, which was accompanied by the cleavage of 116 kD PARP to 85 kD product. Conclusions : These results suggest that the apoptotic effects of RA extract on HepG2 cells could not be explained by aconitine. Additionally, RA extract induced apoptosis in hepatoma cells through caspase-3 activation and subsequent PARP cleavage.

  • PDF

Screening of Fibrinolytic Enzyme Producing from Microorganisms and Optimum Conditions of Enzyme Production (혈전 분해효소 생산균의 탐색 및 효소생산 최적조건의 조사)

  • 최무영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.976-980
    • /
    • 2003
  • A strain of potential producer of fibrinolytic enzyme was isolated from Korean fermented food. The isolated bacterium was identified and named as Bacillus brevis KJ-23. The optimal condition of the medium for the production of fibrinolytic enzyme from Bacillus brevis KJ-23 was nutrient broth with 0.5% D-ribose, 0.5% malt extract and 0.3% $K_2$HPO$_4$. The optimum pH, temperature and fermentation time for the enzyme production were pH 7.0, 3$0^{\circ}C$ and 24 hr, respectively.

The Synthesis of 6-[1-(4-Ribitylanilino)ethyl]-1,3-dimethyllumazine Related to Methanopterin (Methanopterin과 관련된 6-[1-(4-Ribitylanilino)ethyl]-1,3,7-trimethyllumazine의 합성)

  • Jang, Yong Jin;Kim, Yeon Hee;Kang, Yong Han
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.670-675
    • /
    • 1999
  • 6-[1-(4-Ribitylanilino)ethyl]-1,3,7-trimethyllumazine (2), which is related to pteridine moiety of methanopterin, was synthesized. 4-Ribitylaniline derivative was prepared from D-ribose and N-benzoyl-4-bromoaniline (7) as the starting materials through several steps. 6-Acetyl-1,3,7-trimethyllumazine (4) was obtained from the reaction of 4-amino-1,3-dimethyI-5-nitrosouracil (3) with 2,4-pentanedione by Timmis reaction. Compound 4 was converted to 6-(1-chloroethyl)-1,3,7-trimethyllumazin (6) by the reduction with sodium borohydride and followed by chlorination with thionyl chloride. The nucleophilic displacement reaction of compound 6 with 4-(2,3:4,5-di-O-iso-propylidene-D-ribityl)aniline (13) in anhydrous DMF yielded 6-[1-{4-(2,3:4,5-di-O-isopropylidene-D-ribityl)anilino}ethyl]-1,3,7-trimethyllumazine (14). The target molecule 2 was obtained by the hydrolysis of compound 14 in the presence of an acid catalyst.

  • PDF

Biological Active Substance Produced by a Strain of Streptomyces sp. (Part.III) Purification and Nutritional Requirement. (Streptomyces 속 균주가 생성한 물질의 생물활성 (제삼보) 정제 및 영양요구성)

  • 송방호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.36-45
    • /
    • 1977
  • A piscicidal substance was isolated from the culture medium of Streptomyces umbrosus by avicel column chromatography and avicel thin layer chromatography after extration with chroloform. Bluegreen fluorescence was emitted under UV irradiation. Factors which govern toxin production and nutrition requirement for high toxin titres were observed. Nutritional uptake for toxin production was not curresponded with that for cell growth. Alanine, valine, serine asparagine, arginine, histidine, urea and sodium nitrate as a carbon source and glucose, mannose, rhamnose, xylose, arabitol and starch as a carbon source were recognized as a favorable nutrient for high toxin production. Magnesium was essential factor whereas vitamins were not of effective. Most of toxin was formed simultaneously with cell growth in esponential phase. Maximal production was observed for six day culture at 3$0^{\circ}C$. Tissues of gill, kidney and pnacreas in Cyprinus carpio were denatured extreamly after treating with the substance. Atrophied nucleous, indented membrane and degradated cytoplasm with necrotic affectness were noted on each tissue. The chemical formula of the substance was designated as $C_{38}$ $H_{66}$ $NO_4$.

  • PDF

Production of Rare Monosaccharides Using Microorganisms and Their Enzymes

  • Izumori, Ken;Bhuiyan, Shakhawat Hossain
    • Food Industry And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 1997
  • Microbial of enzymatical methods are suitable for production of rare monosaccharides. Using oxidation and reduction ability of Microorganisms, various rare ketoses and polyols can be produced, for example D-tagatose from galagtitol by Enterobacter agglomerans strain 221e. L-tagatose from galactitol by Klebsiella pheumonias strain 40b, L-psicose from allitol by Gluconobacter frateurii IFO 3254, D-talitol from d-tagatose by Aureobasidium pullulans strain 113B, allitol from D-psicose by Enterobacter agglomerans strain 221e and so on. We can produce various rare aldoses and ketoses using aldose isomerases, for example L-galactose from L-tagatose by D-arabnose isomerase, and L-ribose from L-ribulose by L-isomerase, and so on. D-Tagatose 3-epimerase of Pseudomonas sp. ST-24 is very useful for preparationof various rare ketoses, for example D-psicose from D-fructose, D-sorbose from D-tagatose, L-fructose, from L-psicose and so on. Using polyol dehydrogenases, aldose isomerases and D-tagatose 3-epimerase, we can design the suitable for production of a certain rare monosaccharide from a suitable substrate.

  • PDF

Formation of D-Glucose Isomerase by Streptomyces sp. (Streptomyces sp.에 의한 포도당 이성화효소의 생성)

  • Rhee, In-Koo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.173-180
    • /
    • 1980
  • A source of D-xylose was required for the enhanced production of D-glucose isomerase of Streptomyces sp. strain K-17. D-glucose supported the luxuriant growth of the organism as well as D-xylose, but D-glucose isomerase activity was hardly detected in the D-glucose-grown cells. When the D-glucose-grown cells were incubated aerobically for a few hours in 0.5% xylose solution in 0.05 M phosphate buffer, pH 7.0, it was found that inductive formation of D-glucose isomerase occurred in the cells without multiplication. In the non-growth phase of cells the inductive formation of D-glucose isomerase occurred because a source of nitrogen for the synthesis of enzymes was obtained from turnover of protein accumulated in cells. D-ribose, L-arabinose, D-glucose, D-mannose, citrate, succinate and tartrate could not induce the formation of D-glucose isomerase, but D-xylose could induce. Inductinn of D-glucose isomerase was repressed by D-glucose and its catabolites : glycerol, succinate and citrate. Inductive formation of the enzymes in the non-growth phase was stimulated by $Ba^{2+}$, $Mg^{2+}$ and $Co^{2+}$, and inhibited by C $u^{2+}$, C $d^{2+}$, A $g^{+}$and H $g^{2+}$. The synthesis of enzymes in the induction system composed of 0.5% xylose solution was disrupted by actinomycin D, streptomycin, chloramphenicol, kanamycin, tetracycline, p-chloromercuribenzo ate, arsenate and 2, 4-dinitrophenol, but not disrupted by mitomycin C and penicillin G.icillin G.

  • PDF

Purification and Characterization of the D-xylulokinase from Candida sp. L-16 (Candida sp. L-16이 생산하는 D-Xylulokinase의 정제 및 특성)

  • 이종수;주길재
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.429-433
    • /
    • 2002
  • The D-xylulokinase from Candida sp. L-16 was purified through a sequence of ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-100 and Sephadex G-200 gel filtration. The specific activity of the purified Dxylulokinase was increased to 23.2 fold and the yield was 11.2%. The enzyme was showed to be a single protein band by SDS-PAGE. The molecular weight of the enzyme was 150,000 dalton, this enzyme was identified to be a dimer with two subunits. The optimum conditions of the enzyme were pH 8.0 and 40$\^{C}$, respectively. The enzyme was relatively stable between pH 7.0 to pH 9.0, but it was unstable over 30$\^{C}$. The enzyme showed substrate specificity on D-xylulose, D-arabinose and D-ribose, Km value and Vmax for D-xylulose were 0.042 mM and 117 units/ml, respectively. The activation energy of the enzyme was 4.75 Kcal/mol. The one was inhibited by metabolic intermediates such as 6-phosphogluconic acid, 2-keto-gluconic acid. The enzyme was activated by EDTA and thiol compounds such as cysteine-HCI, DTT and glutathione.

Isolation, Identification and Mutant Development of Butanol Tolerance Bacterium (부탄올 내성 미생물의 분리, 동정 및 변이주의 개발)

  • Jung, Hyesook;Lee, Jinho
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Butanol-resistant bacteria were isolated from butanol solvent. The cell growth of isolated strains declined with increasing concentrations of butanol, and isolated strain BRS02 displayed more resistance to 12.5 g/L of butanol than other isolated strains. In addition, strain BRS251, which was resistant to even higher concentrations of butanol, was developed by the mutation of BRS02 using UV. BRS251 could grow in LB medium containing up to 17.5 g/L of butanol, 32.5 g/L of propanol, or 6 g/L of pentanol, whereas the control strain Escherichia coli was found to be tolerant to 7.5 g/L of butanol, 20 g/L of propanol, or 2 g/L of pentanol. The isolated BRS02, a Gram(+) bacterium seen to have a cocci form under the microscope, grew in 6.5% NaCl. According to biochemical tests, BRS02 can metabolize and produce acid with D-galactose, D-maltose, D-mannitol, D-mannose, methyl-${\beta}$-Dglucopyranoside, D-ribose, sucrose, or D-trehalose, as carbon sources. Also, this strain showed resistance to bacitracin, vibriostatic agent O/129, and optochin, alongside positive activities for arginine dihydrolase, ${\alpha}$-glucosidase, and urease. The BRS02 strain was identified as Staphylococcus sp. by analyses of the 16S rRNA gene, phylogenetic tree, and biochemical tests.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

Antitumor effects of ophiopogonin D on oral squamous cell carcinoma

  • Nguyen Thi Kieu Trang;Vu Phuong Dong;Hoon Yoo
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.42-47
    • /
    • 2024
  • Ophiopogonin D (OPD) is a steroidal glycoside derived from Ophiopogon japonicus, a traditional Chinese medicine with diverse biological activities, including antithrombosis, anti-inflammation, and antitussive effects. To investigate the cellular effects and mechanisms of OPD on oral squamous cell carcinoma, cell viability was explored, and the effects of OPD on cell cycle regulators, apoptotic marker proteins, and key proteins involved in metastasis and signaling pathways were examined by MTT assay and Western blotting in YD38 cells. OPD strongly inhibited cell proliferation and induced caspase-dependent apoptosis of YD38 cells by suppressing the cell cycle and activating caspase-3 and poly ADP ribose polymerase. Additionally, OPD suppressed the expression of vital proteins regulating metastasis and proliferation within the integrin/matrix metalloproteinases/FAK and AKT/PI3K/mTor pathways. Thus, OPD can be a potential treatment candidate for gingival cancer.