• Title/Summary/Keyword: D-optimal Method

Search Result 1,494, Processing Time 0.035 seconds

A study on lightening the weight of an induction motor satisfying maximum power rating (순시 정격을 고려한 유도기 경량화에 관한 연구)

  • Park, Jeong-Tae;Lee, Cheol-Gyun;Kim, Joung-Koo;Jung, Hyun-Kyo;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.162-164
    • /
    • 1994
  • This paper presents the optimal design method of an induction motor for electric vehicle which minimizes the weight of motor and satisfies maximum power rating at the same time. Effects of motor parameters on the dimensions and weight of motor is investigated. Optimal routine which is used in this paper is simulated annealing technique.

  • PDF

Development of a Combinational Evaluation Model for Building An Optimal R&D Project Portfolio (R&D 프로젝트의 최적 포트폴리오 구축을 위한 새로운 평가모형의 개발)

  • Gwon Cheol Sin;Park Jun Ho;Kim Bo Hyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.972-975
    • /
    • 2003
  • The purpose of this study is to integrate Decision Theory Approach(DTA) and OR Theory Approach(OTA) systemically. and to develop Combination Theory Approach to build an optimal R&D project portfolio by strategies. To Integrate two approaches. Utility theory is introduced. Evaluation Results aye converted into utility values by the utility functions and the values are optimized by 0-1 programming. Scoring method and Integer programming is used to evaluation a correspondence with a goal and to allocation the limiting resources. And utility function is used to reflect the preference of decision makers on the project evaluation.

  • PDF

A Divide-and-Conquer Algorithm for Rigging Elections Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.101-106
    • /
    • 2015
  • This paper suggests heuristic algorithm with polynomial time complexity for rigging elections problem that can be obtain the optimal solution using linear programming. The proposed algorithm transforms the given problem into adjacency graph. Then, we divide vertices V into two set W and D. The set W contains majority distinct and the set D contains minority area. This algorithm applies divide-and-conquer method that the minority area D is include into majority distinct W. While this algorithm using simple rule, that can be obtains the optimal solution equal to linear programing for experimental data. This paper shows polynomial time solution finding rule potential in rigging elections problem.

A Study on the Optimal Design of Planar Flyback Transformers suitable for Small-size and Low-profile (소형화 및 슬림형에 적합한 평면 플라이백 변압기의 최적 설계에 관한 연구)

  • Na, Hae-Joong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.828-837
    • /
    • 2020
  • This paper presents the optimal design of planar flyback transformer suitable for small-size and low-profile of AC to DC adapter for 10W tablet. This paper also proposes the injection winding transformer of Hybrid and Drum types capable of the winding method of automatic type and the reduction of transformer size and leakage inductance(Lk) compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the injection winding transformer of Drum type proposed in this paper is constructed in a horizontal laying of its transformer to solve the connection problem of copper plate injection winding on the secondary side of the one of Hybrid type. The primary and secondary windings of the injection winding transformer of Hybrid and Drum types used the conventional winding and the copper plate injection winding, respectively. For the injection winding transformer of Hybrid and Drum types proposed in this paper, the optimal design of planar flyback transformer suitable for small-size and low-profile was carried out using Maxwell 2D and 3D tool.

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

Optimal Design for a Moving aMgnet Type Linear D.C. Motor (가동자석형 선형 직류모터의 최적설계)

  • Son, Dong-Seol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.94-98
    • /
    • 1995
  • This paper proposes an optimal design method for the weight and cost of a moving magnet typer linear DC motor (MM-LDM). The optimal design condition such as type and size of MM-LDM were determined by the trinary search algorithm after adjusting a standard function and its related parameters. In order to verigy results of the optimal design by the computer simulation, the designed values such as a thrust, a current, a velocity, and etc. of the fabricated MM-LDM were measured. And the measurement results are in good agreement with the designed ones.

  • PDF

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA model 후미의 저저항 최적 설계)

  • Kim Wook;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.67-74
    • /
    • 1998
  • Reducing drag of vehicles are the main concern for the body shape designers in order to lower fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having lowest drag coefficient which is about $6\%$ lower than that of the original shape has been successfully obtained within number of iterations of the optimal design loop.

  • PDF

ANALYSIS OF THE MITIGATION STRATEGIES FOR MARRIAGE DIVORCE: FROM MATHEMATICAL MODELING PERSPECTIVE

  • TESSEMA, HAILEYESUS;MENGISTU, YEHUALASHET;KASSA, ENDESHAW
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.857-871
    • /
    • 2022
  • In this work, we formulated a mathematical model for divorce in marriage and extended in to an optimal control model. Firstly, we qualitatively established the model positivity and boundedness. Also we saw sensitivity analysis of the model and identified the positive and negative indices parameters. An optimal control model were developed by incorporating three time dependent control strategies (couple relationship education, reducing getting married too young & consulting separators to renew their marriage) on the deterministic model. The Pontryagin's maximum principle were used for the derivation of necessary conditions of the optimal control problem. Finally, with Newton's forward and backward sweep method numerical simulation were performed on optimality system by considering four integrated strategies. So that we reached to a result that using all three strategies simultaneously (the strategy D) is an optimal control in order to effectively control marriage divorce over a specified period of time. From this we conclude that, policymakers and stakeholders should use the indicated control strategy at a time in order to fight against Divorce in a population.

Control of Crane Systems by a Digital Redesign Method (디지탈재설계법에 의한 크레인계의 제어)

  • 이동철;신민생;하주식;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 1992
  • An algorithm of transforming continuous-time state feedback gains into equivalent discrete-time feedback gains or vice versa is proposed using bilinear transformation. The proposed method is evaluated experimentally by an application control of a mobile crane system which is implemented by 16bits micro computer with A/D and D/A converters. It has been shown from the experimental result that the transformed feedback gains are virtually identical to the optimal discrete gain over range of significant sampling time. Since the transformed matrix is composed by a distinct relationship between continuous-time gain and discrete-time gain, it is noted that the proposed method can be regarded as an explicit gain transformation method compared to the other methods using series expansion.

A Study on the Control Method of Customer Voltage Variation in Distribution System with PV Systems

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Yong-peel;Kim, Eung-sang;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.838-846
    • /
    • 2015
  • This paper deals with the modified modeling of PV system based on the PSCAD/EMTDC and optimal control method of customer voltages in real distribution system interconnected with the photovoltaic (PV) systems. In order to analyze voltage variation characteristics, the specific modeling of PV system which contains the theory of d-q transformation, current-control algorithm and sinusoidal PWM method is being required. However, the conventional modeling of PV system can only perform the modeling of small-scale active power of less than 60 [kW]. Therefore, this paper presents a modified modeling that can perform the large-scale active power of more than 1 [MW]. And also, this paper proposes the optimal operation method of step voltage regulator (SVR) in order to solve the voltage variation problem when the PV systems are interconnected with the distribution feeders. From the simulation results, it is confirmed that this paper is effective tool for voltage analysis in distribution system with PV systems.