• Title/Summary/Keyword: D-optimal Design

Search Result 1,314, Processing Time 0.026 seconds

Optimal Design of Quadrilateral Typed-Overboarding Mechanism for Drop/Lift Automation of Towed Object (예인체의 투하 및 인양 자동화를 위한 사변형 Overboarding Mechanism의 최적설계)

  • Kang, Seok Jeong;Chung, Won Jee;Park, Seong Hak;Choi, Jong Kap;Kim, Hyo Gon;Lee, Jun Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • A crane is typically used as a means to lift and load equipment or materials. A surface vessel uses a towed object for underwater activity. Such a mechanism for dropping and lifting of equipment is necessary, and is called an overboarding unit. The present study is focused on the overboarding unit used for a crane structure. This paper deals with new overboarding mechanism design and GA-based $MATLAB^{(R)}$ optimization. By using a quadrilateral link mechanism, it is possible to set the constraint function for optimizing the GA method. The optimization with $MATLAB^{(R)}$ is followed by the $SolidWorks^{(R)}$ simulation and verification. When applying the proposed mechanism, the operator is expected to have a big advantage in safety and efficiency of operations. Furthermore, the technology developed in this study will be helpful in similar circumstances and in the proposed mechanism.

Strategies of Technology Development for Improvement of National Energy Resources Supply (국내 에너지자원 자급률 향상을 위한 기술개발 전략)

  • Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.57-61
    • /
    • 2010
  • In order to make higher domestic self-sufficiency ratio of energy resources, these are required to purchase the producing oil & gas fields through the investment of oversea petroleum development, to make M&A, and to enhance recovery in the existing oil & gas fields. For this purpose, it is essential to acquire the core technology regarding the evaluation, design, and management of oil & gas fields. The accumulation of technology of the evaluation, optimal design, proper management of production fields by the help of the continuous R&D program will make great contribution for higher domestic self-sufficiency ratio by the increased number of purchase of foreign producing fields, the increase amount of produced petroleum out of existing fields, and the effective management of the oil and gas fields.

Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method (유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계)

  • Song, Y.J.;Hahn, Y.H.;Park, C.D.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.

A Study on the Evacuation Performance According to Variation in Remoteness between Exit Stairways in Tall Buildings

  • Han, Gisung;Kim, Tae-Young;Lee, Kyung-Hoon
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.53-61
    • /
    • 2020
  • The purpose of this study is to examine the influence of remoteness between exit stairways on evacuation performance. Firstly, we reviewed the design regulations of the U.S., the U.K., and South Korea, in relation to remoteness between Exit stairways. Secondly, evacuation simulation was implemented, in order to evaluate the adequacy of each standard. Eight tall buildings in South Korea were selected for the simulation. Evacuation performance was assessed for different remote distances between Exit stairways. Lastly, this research analyses the evacuation simulation data statistically in relation to the effect of remoteness on evacuation time. We found that as the distance between two exit stairways increases, the total evacuation time and average evacuation time for evacuees decreases. There was no statistical influence between the maximum travel distance of the evacuee and the remoteness between two exit stairways, but there was a significant effect on the average travel distance of the evacuees. In addition, the results from the optimal point showed that the L_ratio had the highest evacuation time at 0.44, while the D_ratio had the highest evacuation time at 0.38.

FLOW ANALYSIS OF THE IMPELLER WITH DIFFERENT INLET ANGLES IN THE CENTRIFUGAL PUMP (원심펌프 임펠러 입구각도 변화에 따른 유동해석)

  • Lee, S.H.;Lee, D.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This research is to investigate the performance analysis for efficient design with four different inlet angles of the centrifugal pump impeller. Assuming that the rotation speed and exit angle are fixed, Four cases of the centrifugal pumps were numerically analyzed using ANSYS FLUENT. According to the numerical results, head and pump efficiency at inlet angle of 20 degrees was highest. There is no big difference of efficiency at inlet angle of 20 degrees compared to the inlet angle 30 degrees. About 15% of efficiency at inlet angle of 20 degrees is higher than inlet angle of 40 degrees and 31% higher than inlet angle oof 50 degrees. Because there is liner functional relationship between speed and flow rate, suction flow rate at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.89%, inlet angle of 40 degrees as 13%, inlet angle of 50 as 28.4%. Head at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.4%, inlet angle of 40 degrees as 2.7%, inlet angle of 50 degrees as 3.2%. There should exist highest efficiency and also optimal design shape at inlet angle of 20 degrees.

A Study on Development of Humeral Intramedullary Fixation Nail based on Korean Cadaver Tests (한국인 Cadaver Test에 대한 상완골 골수정 개발에 관한 연구)

  • Chon, Chang-Soo;Lee, Jae-Won;Ko, Cheol-Woong;Oh, Jong-Keon;Woo, Soo-Heon;Lee, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.984-991
    • /
    • 2011
  • The aim of this study is to develop a humeral Intramedullary fixation nail (HIFN) suitable for Korean people. In this study, CT images were obtained from 72 Korean cadaveric humeral bones and 3D Korean humeral bone models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of HIFN were selected using the morphological measurement information of the Korean humeral bone models. Through finite element analysis and mechanical tests, the developed HIFN prototype was compared with the Polarus HIFN ($ACUMED^{(R)}$, USA), and it was found that the HIFN prototype showed similar and/or superior mechanical performance compared to the Polarus HIFN. Also, clinical validation for the HIFN prototype was carried out to check predictable troubles in surgical operations. Finally, optimal design modification was proposed to prevent the possible axillary nerve injury due to the locking screw system of the HIFN prototype.

A Straightforward Estimation Approach for Determining Parasitic Capacitance of Inductors during High Frequency Operation

  • Kanzi, Khalil;Nafissi, Hanidreza R.;Kanzi, Majid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.339-353
    • /
    • 2014
  • A straightforward method for optimal determining of a high frequency inductor's parasitic capacitance is presented. The proposed estimation method is based on measuring the inductor's impedance samples over a limited frequency range bordering on the resonance point considering k-dB deviation from the maximum impedance. An optimized solution to k could be obtained by minimizing the root mean squared error between the measured and the estimated impedance values. The model used to provide the estimations is a parallel RLC circuit valid at resonance frequency which will be transferred to the real model considering the mentioned interval of frequencies. A straightforward algorithm is suggested and programmed using MATLAB which does not require a wide knowledge of design parameters and could be implemented using a spectrum analyzer. The inputs are the measured impedance samples as a function of frequency along with the diameter of the conductors. The suggested algorithm practically provides the estimated parameters of a real inductance model at different frequencies, with or without design information. The suggested work is different from designing a high frequency inductor; it is rather concentration of determining the parameters of an available real inductor that could be easily done by a recipe provided to a technician.

A Highly Efficient Broadband Class-E Power Amplifier with Nonlinear Shunt Capacitance

  • Dang-Duy, Ninh;Ha-Van, Nam;Jeong, Daesik;Kim, Dong Hwan;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.221-227
    • /
    • 2017
  • A new approach to designing a broadband and highly efficient class-E power amplifier based on nonlinear shunt capacitance analysis is proposed. The nonlinear shunt capacitance method accurately extracts optimum class-E power amplifier parameters, including an external shunt capacitance and an output impedance, at different frequencies. The dependence of the former parameter on the frequency is considered to select an optimal value of external shunt capacitor. Then, upon determining the latter parameter, an output matching network is optimized to obtain the highest efficiency across the bandwidth of interest. An analytical approach is presented to design the broadband class-E power amplifier of a MOSFET transistor. The proposed method is experimentally verified by a 140-170 MHz class-E power amplifier design with maximum added power efficiency of 82% and output power of 34 dBm.

Optimization of Slanted and Chirp IDT Configurations for Realizing and Propagating Surface Acoustic Wave with Wide Bandwidth (광대역 표면탄성파 구현을 위한 slanted 및 chirp IDT의 최적화)

  • Lee, Tae-Yoon;Fu, Chen;Lee, Kee-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1730-1736
    • /
    • 2013
  • Slanted and chirp interdigital transducer(IDT) configurations were studied for generating the surface acoustic wave(SAW) with wide bandwidths on a piezoelectric substrate. These devices can be applied to manipulate optical path of light along the waveguide, ultimately used for optical switches and holographic image implementation. Prior to fabrication, the coupling of modes(COM) modeling and simulation were performed to extract optimal design parameters. The optimally designed wideband device showed wide bandwidth of 30MHz, low insertion loss of -25dB, and abrupt side suppression ratio (SSR). Several design conditions were determined during device implementation, such as slanted angle, aperture length, number of fingers, and central frequencies of IDTs. These factors were experimentally analyzed and described in details in this paper.

Numerical Design of Auto-Catalyst Substrate for Improved Conversion Performance Using Radially Variable Cell Density (변환효율 향상을 위한 횡방향 가변 셀밀도법을 사용한 자동차용 촉매변환기의 수치적 설계)

  • Jeong, Su-Jin;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1596-1607
    • /
    • 2000
  • The optimal design of auto-catalyst needs a good compromise between the pressure drop and flow uniformity in the substrate. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. But this method has not been examined its usefulness in terms of chemical behavior and conversion performance. In this work, two-dimensional performance prediction of catalyst coupled with turbulent reacting flow simulation has been used to evaluated the benefits of this method n the flow uniformity and conversion efficiency. The results showed that two cell combination of 93cpsc and 62 cpsc was the most effective for improved pressure drop and conversion efficiency due to balanced space velocity and efficient usage of geometric surface area of channels. It was also found that large temperature difference between the bricks in case that the edge of the frontal face of brick has too much lower cell density(less than 67% of cell density of the center of the brick). This study has also demonstrated that the present computational results show the better prediction accuracy in terms of CO, HC and NO conversion efficiencies compared to those of conventional 1-D adiabatic model by comparison with experimental results.