• Title/Summary/Keyword: D-lactic acid

Search Result 503, Processing Time 0.02 seconds

Effect of Lactic Acid Bacteria on D- and L-Lactic Acid Contents of Kimchi

  • Jin, Qing;Yoon, Hyang-Sik;Han, Nam-Soo;Lee, Jun-Soo;Han, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.948-953
    • /
    • 2006
  • The D-form of lactic acid is frequently detected in fermented foods, and an excessive dietary intake of D-lactic acid may induce metabolic stress in both infants and patients. This work was carried out to determine the prevailing microorganisms relevant to the accumulation of D-lactic acid in kimchi. Leuconostoc (Leuc.) mesenteroides and Leuc. citreum primarily synthesized D-lactate with a small quantity of L-form. Leuc. gelidum and Leuc. inhae evidenced patterns similar to this. Lactobacillus (Lb.) plantarum and Lb. brevis were shown to convert glucose into a balanced mixture of D-/L-lactic acid, whereas Lb. casei principally synthesized L-lactic acid and a very small quantity of D-lactic acid. When kimchi was incubated at 8 or $22^{\circ}C$, D-lactic acid was over-produced than L-form. Leuconostoc was determined as the primary producer between the initial to mid-phase of fermentation and Lb. plantarum or Lb. brevis seemed to boost D-lactic acid content during later stage of acid accumulation.

D(-) and L(+)-Lactic Acid Determination of Lactobacillus acidophilus during Fermentation and Storage Period (Lactobacillus acidophilus NCFM의 배양 및 저장 중 D(-) 및 L(+)-lactic acid의 변화)

  • Lee, Kyung-Wook;Shin, Yong-Kook;Baick, Seung-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.168-174
    • /
    • 1998
  • The amount of D(-)-lactic acid in fermented dairy products is very important because the rate of metabolism of D(-)-lactic acid is lower than that of L(+)-lactic acid. The purpose of this study was to investigate the optimum condition during fermentation and storage of yogurt for the formation of isomers of lactic acid by Lactobacillus acidophilus NCFM. The production of acid was excellent at $37^{\circ}C$ of fermentation and the ratio of D(-)-lactic acid was also lower than that of other conditions such as $35^{\circ}C{\;}and{\;}40^{\circ}C$. Among shaking and non-shaking treatment under aerobic condition and anaerobic condition, non-shaking treatment under aerobic condition was the best condition at the production of acid and L(+)-lactic acid during fermentation. During storage at low temperature, a larger amount of L(+)-lactic acid was produced than at higer storage temperature.

  • PDF

The Current State of D-lactic Acid Production Technology Using Microorganism (미생물을 이용한 D형 유산 생산 기술 현황)

  • Hong, Chae-Hwan;Kim, Si-Hwan;Seo, Ji-Yeon;Han, Do-Suck;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • There has been a growing attention on PDLA (poly D-lactic acid) since stereocomplex PLA, a kind of polymer alloy between PLLA and PDLA was known much thermally stable compared PLLA. Superior characteristics of stereocomplex PLA result in the elevated demand for D-lactic acid. Although many research works have been reported for L-lactic acid production especially food industry, however there are relatively few research works for D-lactic acid production since D-lactic acid cannot find any applications in food industry. Most imminent issue for D-lactic acid is the economic production process that requires low cost medium, efficient lactic acid producing microorganism and finally large scale-up design. In this review, current status of D-lactic acid production process will be summarized and discussed for the further improvement of D-lactic acid production process.

Pseudomonas sp. JH007에 의한 DL-2-Chloropropionic Acid로부터 D-Lactic Acid의 생산

  • 정자헌;황인균;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.357-363
    • /
    • 1996
  • For the production of D-lactic acid from DL-2-chloropropionic acid, about 80 strains of bacteria capable of assimilating DL-2-chloropropionic acid as a sole carbon and energy source were isolated from the soil. JH-007 strain that showed the higest productivity of D-lactic acid and didn't produce L-lactic acid from DL-2-chloropropionic acid was selected from them and identified as Pseudomonas sp. The optimal conditions for the production of D-lactic acid from DL-2-chloropropionic acid were examined. The resting cells of JH-007 cultured in LB medium containing 3 g/l of DL-2-chloropropionic acid were used as an enzyme source. The reaction mixtures for the maximal production of D-lactic acid were consist of 10 g/l of resting cells and 3 g/l of DL-2-chloropropionic acid in 125 mM sodium carbonate buffer. The optimal pH for the reaction was 10.0 and the optimal temperature was 30$\circ$C. When 1 g/l of DL-2-chloropropionic acid was added intermittently to the reaction mixture under the above condition, 5.72 g/l of D-lactic acid was produced after incubation of 5 hrs. This amount of D-lactic acid corresponded to a 98.4% yields and the optical purity was 99.8%.

  • PDF

Comparison of D- and L-Lactic Acid Contents in Commercial Kimchi and Sauerkraut

  • Yoon, Hyang-Sik;Son, Yeo-Jin;Han, Jin-Soo;Lee, Jun-Soo;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.64-67
    • /
    • 2005
  • Commercial kimchi and sauerkraut were analyzed for their D- and L-lactic acid contents. Ranges of D- and L-lactic acid contents in commercial kimchi were 17-57 (38.51 mean) and 25-87 (64.47 mean) mM, respectively. Ratio of D-lactic acid on L-lactic acid (D/L) was 0.50-0.80 (0.60 mean). Ranges of D- and L-lactic acid contents in commercial sauerkraut were 68.96-103.62 (88.97 mean) and 74.46-82.26 (78.91 mean) mM, respectively, with D/L of 0.90-1.26 (1.13 mean). Results reveal kimchi and sauerkraut contained a significant amount of D-lactic acid, with sauerkraut showing a higher content than kimchi, while L-lactic acid contents were not significantly different.

Production of D-Lactic Acid from DL-Lactonitrile by Pseudomonas sp. (Pseudomonas sp.에 의한 DL-Iactonitrile로부터 D-lactic acid의 생산)

  • 김현수;황인균;정남현;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • By using DL-acetonitrile as enzyme inducer, 90 bacteria were isolated from a field soil. Among the isolated strains, the strain WJ-003 showed the highest activity for production of D-lactic acid from DL-lactonitrile, and was partially identified as Pseudomonas sp. The production condition of D-lactic acid from DL-lactonitrile using resting cells as an enzyme source was optimized as follows: the reaction mixture contained 10 mM of DL-lactonitrile, 20 g of wet cells in 11 of 20 mM potassium phosphate buffer (pH 7.0) and the reaction was carried out at $30^{\circ}C$. After 18 h of reaction, 0.843 g/l of D-lactic acid was produced which corresponded to a conversion ratio of 93.7% and an optical purity of 99.8%. Additionally, when 10 mM of DL-lactonitrile was added once more to the reaction mixture at 14 h, 1.64 g/1 of D-lactic acid was produced after 28 h. In this experiment, the conversion ratio was 91.1% and optical purity 99.8%.

D(-)- and L(+)-Lactic Acids Contents of Commercial Yogurts (시판 요구르트 중의 D(-)- 및 L(+)-락트산 함량)

  • Park, In-Duck;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.520-522
    • /
    • 1991
  • The ranges of D(-)- and L(+)-lactic acids contents in commercial liquid yogurt were $6.1{\sim}535.8mg/100ml\;and\;70.0{\sim}664.6mg/100ml$, respectively. The ratio of L(+)-lactic acid to D(-)-lactic acid was $0.2{\sim}109.0$. The ranges of D(-)- and L(+)-lactic acids contents in commercial semi-solid yogurt were $10.1{\sim}418.3mg/100g\;and\;515.8{\sim}792.1mg/100g$ respectively. The ratio of L(+)-lactic acid to D(-)-lactic acid was $1.2{\sim}78.4$.

  • PDF

Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant (한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성)

  • Park, Jong-Gil;Yun, Suk-Young;Oh, Se-Jong;Shin, Jung-Gul;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1244-1247
    • /
    • 2003
  • The purpose of this study was to isolate lactic acid bacteria that produced L(+) lactic acid from infant feces. Thirteen colonies were isolated with a MRS-plate containing 0.5% $CaCO_3$ to determine their ability to produce lactic acid. Based on their lactic acid production, 10 strains of Lactobacillus were identified to assess the ratio of lactate isomer using HPLC. A strain producing L-lactic acid was identified as Lactobacillus acidophilus, using API carbohydrate fermentation patterns and physiological tests, and named KY1909. The strain exhibited good acid tolerance in an artificial gastric juice as well as high bile resistance in MRS containing 0.5% bile acids. L. acidophilus KY1909 produced D(-) and L(+) lactic acid at a ratio of 6 : 94; whereas commercial strains of Lactobacillus acidophilus produced D(-) and L(+) lactic acid at a ratio of 1 : 1. These results demonstrate the L. acidophilus KY1909 can be utilized in fermented milk products and dietary supplements as a probiotic culture.

Hepatoprotective Effect of Lactic Acid Bacteria

  • BAN SONG-VI;HUH CHUL-SUNG;AHN YOUNG-TAE;LIM KWANG-SEI;BAEK YOUNG-JIN;KIM DONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.887-890
    • /
    • 2005
  • To evaluate the hepatoprotective activity of lactic acid bacteria, their effects on tert-butylperoxide (t-BHP)-induced hepatotoxicity in mice were measured. When lactic acid bacteria at doses of 0.5 and 2 g (wet weight)/kg were orally administered to mice with t-BHP-induced liver injury, these bacteria significantly inhibited the increase of plasma alanine aminotransferase and aspartate aminotransferase activities by $17-57\%$ and $57-66\%$ of the t-BHP control group, respectively. However, these lactic acid bacteria did not protect cytotoxicity induced by t-BHP against HepG2 cells. The inhibitory effects of these lactic acid bacteria at a dose of 15 g/kg were comparable with that of diphenyl dimethyl bicarboxylate at a dose of 0.2 g/kg, which has been used as a commercial hepatoprotective agent. Among these lactic acid Jacteria, Bifidobacterium longum HY8001 exhibited the most potent hepatoprotective effect. These orally administered lactic acid bacteria inhibited liver lipid peroxidation on t-BHP-induced hepatotoxicity of mice. We suggest that lactic acid bacteria may be an effective agent against liver injury.

Hepatoprotective Effect of Lactic Acid Bacteria, Inhibitors of $\beta$-Glucuronidase Production Against Intestinal Microflora

  • Han Song Yi;Huh Chul Sung;Ahn Young Tae;Lim Kwang Sei;Baek Young Jin;Kim Dong Hyun
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.325-329
    • /
    • 2005
  • The hepatoprotective activity of lactic acid bacteria (Lactobacillus brevis HY7401, Lactobacillus acidophilus CSG and Bifidobacterium longum HY8001), which inhibited $\beta$-glucuronidase productivity of intestinal microflora, on t-BHP- or CCl$_4$-induced hepatotoxicity of mice were evaluated. These oral administration of lactic acid bacteria lowered $\beta$-glucuronidase production of intestinal microflora as well as Escherichia coli HGU-3. When lactic acid bacteria at a dose of 0.5 or 2 g (wet weight)/kg was orally administered on CCl$_4$-induced liver injury in mice, these bacteria significantly inhibited the increase of plasma alanine transferase and aspartate transferase activities by $17-57\%$ and $57-66\%$ of the $CCI_4$ control group, respectively. These lactic acid bacteria also showed the potent hepatoprotective effect against t-BHP-induced liver injury in mice. The inhibitory effects of these lactic acid bacteria were more potent than that of dimethyl diphenyl bicarboxylate (DDB), which have been used as a commercial hepatoprotective agent. Among these lactic acid bacteria, L. acidophilus CSG exhibited the most potent hepatoprotective effect. Based on these findings, we insist that an inhibitor of $\beta$-glucuronidase production in intestine, such as lactic acid bacteria, may be hepatoprotective.