• 제목/요약/키워드: D-lactic acid

검색결과 503건 처리시간 0.021초

Effect of Lactic Acid Bacteria on D- and L-Lactic Acid Contents of Kimchi

  • Jin, Qing;Yoon, Hyang-Sik;Han, Nam-Soo;Lee, Jun-Soo;Han, Jin-Soo
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.948-953
    • /
    • 2006
  • The D-form of lactic acid is frequently detected in fermented foods, and an excessive dietary intake of D-lactic acid may induce metabolic stress in both infants and patients. This work was carried out to determine the prevailing microorganisms relevant to the accumulation of D-lactic acid in kimchi. Leuconostoc (Leuc.) mesenteroides and Leuc. citreum primarily synthesized D-lactate with a small quantity of L-form. Leuc. gelidum and Leuc. inhae evidenced patterns similar to this. Lactobacillus (Lb.) plantarum and Lb. brevis were shown to convert glucose into a balanced mixture of D-/L-lactic acid, whereas Lb. casei principally synthesized L-lactic acid and a very small quantity of D-lactic acid. When kimchi was incubated at 8 or $22^{\circ}C$, D-lactic acid was over-produced than L-form. Leuconostoc was determined as the primary producer between the initial to mid-phase of fermentation and Lb. plantarum or Lb. brevis seemed to boost D-lactic acid content during later stage of acid accumulation.

Lactobacillus acidophilus NCFM의 배양 및 저장 중 D(-) 및 L(+)-lactic acid의 변화 (D(-) and L(+)-Lactic Acid Determination of Lactobacillus acidophilus during Fermentation and Storage Period)

  • 이경욱;신용국;백승천
    • 한국식품과학회지
    • /
    • 제30권1호
    • /
    • pp.168-174
    • /
    • 1998
  • 이 연구는 발효유 제조시 사용되는 Lactobacillus acidophilus NCFM이 생산하는 lactic acid의 생성변이를 조사하므로써 발효유 제조시 D(-)-lactic acid의 함량을 최소화하고 보존 중의 D(-)-lactic acid의 함량도 최소화하므로써 보다 인체에 유익한 발효유의 제조를 위한 기초적인 정보를 제공하기 위하여 실시되었으며, 그 결과는 다음과 같다. 발효온도는 $37^{\circ}C$에서 산생성이 가장 우수하였으며, D(-)-lactic acid의 비율도 가장 낮았다. 보존온도에 따른 변이에서는 저온에서 후산생성도 적었으며, D(-)-lactic acid의 비율도 가장 낮았다. 또한 처리에 따른 산생성에서는 호기상태에서 산생성이 가장 우수하였으며, D(-)-lactic acid의 함량이 가장 낮았다.

  • PDF

미생물을 이용한 D형 유산 생산 기술 현황 (The Current State of D-lactic Acid Production Technology Using Microorganism)

  • 홍채환;김시환;서지연;한도석;김용환
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.477-482
    • /
    • 2011
  • There has been a growing attention on PDLA (poly D-lactic acid) since stereocomplex PLA, a kind of polymer alloy between PLLA and PDLA was known much thermally stable compared PLLA. Superior characteristics of stereocomplex PLA result in the elevated demand for D-lactic acid. Although many research works have been reported for L-lactic acid production especially food industry, however there are relatively few research works for D-lactic acid production since D-lactic acid cannot find any applications in food industry. Most imminent issue for D-lactic acid is the economic production process that requires low cost medium, efficient lactic acid producing microorganism and finally large scale-up design. In this review, current status of D-lactic acid production process will be summarized and discussed for the further improvement of D-lactic acid production process.

Pseudomonas sp. JH007에 의한 DL-2-Chloropropionic Acid로부터 D-Lactic Acid의 생산

  • 정자헌;황인균;방원기
    • 한국미생물·생명공학회지
    • /
    • 제24권3호
    • /
    • pp.357-363
    • /
    • 1996
  • For the production of D-lactic acid from DL-2-chloropropionic acid, about 80 strains of bacteria capable of assimilating DL-2-chloropropionic acid as a sole carbon and energy source were isolated from the soil. JH-007 strain that showed the higest productivity of D-lactic acid and didn't produce L-lactic acid from DL-2-chloropropionic acid was selected from them and identified as Pseudomonas sp. The optimal conditions for the production of D-lactic acid from DL-2-chloropropionic acid were examined. The resting cells of JH-007 cultured in LB medium containing 3 g/l of DL-2-chloropropionic acid were used as an enzyme source. The reaction mixtures for the maximal production of D-lactic acid were consist of 10 g/l of resting cells and 3 g/l of DL-2-chloropropionic acid in 125 mM sodium carbonate buffer. The optimal pH for the reaction was 10.0 and the optimal temperature was 30$\circ$C. When 1 g/l of DL-2-chloropropionic acid was added intermittently to the reaction mixture under the above condition, 5.72 g/l of D-lactic acid was produced after incubation of 5 hrs. This amount of D-lactic acid corresponded to a 98.4% yields and the optical purity was 99.8%.

  • PDF

Comparison of D- and L-Lactic Acid Contents in Commercial Kimchi and Sauerkraut

  • Yoon, Hyang-Sik;Son, Yeo-Jin;Han, Jin-Soo;Lee, Jun-Soo;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.64-67
    • /
    • 2005
  • Commercial kimchi and sauerkraut were analyzed for their D- and L-lactic acid contents. Ranges of D- and L-lactic acid contents in commercial kimchi were 17-57 (38.51 mean) and 25-87 (64.47 mean) mM, respectively. Ratio of D-lactic acid on L-lactic acid (D/L) was 0.50-0.80 (0.60 mean). Ranges of D- and L-lactic acid contents in commercial sauerkraut were 68.96-103.62 (88.97 mean) and 74.46-82.26 (78.91 mean) mM, respectively, with D/L of 0.90-1.26 (1.13 mean). Results reveal kimchi and sauerkraut contained a significant amount of D-lactic acid, with sauerkraut showing a higher content than kimchi, while L-lactic acid contents were not significantly different.

Pseudomonas sp.에 의한 DL-Iactonitrile로부터 D-lactic acid의 생산 (Production of D-Lactic Acid from DL-Lactonitrile by Pseudomonas sp.)

  • 김현수;황인균;정남현;방원기
    • 한국미생물·생명공학회지
    • /
    • 제30권4호
    • /
    • pp.373-379
    • /
    • 2002
  • Nitrile 비대칭 가수분해효소를 지닌 미생물을 이용하여 DL-lactonitrile로부터 D-lactic acid를 생산하기 위하여, DL-acetonitrile을 효소유도제로 이용할 수 있는 균주를 분리하였다. 분리한 균주들 중 WJ-003균주가 D-lactic acid의 생산능력이 가장 우수하였고, Pseudomonas sp.로 부분동정하였다. DL-lactonitrile로부터 D-lactic acid를 생산하기 위한 최적 반응조건을 검토하였으며 결과들을 요약하면 다음과 같다. 반응혼합액은 10mM의 DL-lactonitrile과 20g(wet weight)의 균체를 포함한 11의 20mM 인산완충액(pH7.0)이었으며, 이때 반응온도는 $30^{\circ}C$이었다. 또한, 18시간 반응이 진행되는 동안 0.843 g/l D-lactic acid가 생산되었고, 이때의 전환율은 93.7%,광학순도는 99.8%이었다 한편, 10mM의 DL-lactonitrile을 14시간 후에 다시 첨가했을 때 28시간에 1.64g/l의 D-lactic acid가 생산되었으며 이때의 전환율은 91.1%, 광학순도는 99.8%이었다.

시판 요구르트 중의 D(-)- 및 L(+)-락트산 함량 (D(-)- and L(+)-Lactic Acids Contents of Commercial Yogurts)

  • 박인덕;홍윤호
    • 한국식품과학회지
    • /
    • 제23권4호
    • /
    • pp.520-522
    • /
    • 1991
  • 시판되고 있는 액상 요구르트 100 ml 중 D(-)-락트산 함량은 $6.1{\sim}535.8mg$, L(+)-락트산 함량은 $70.0{\sim}664.6mg$ 그리고 D(-)-락트산에 대한 L(+)-락트산의 함량비는 $0.2{\sim}109.0$이었다. 호상 요구르트 100g 중의 D(-)-락트산 함량은 $10.1{\sim}418.3mg$, L(+)-락트산 함량은$515.8{\sim}792.1mg$ 그리고 D(-)-락트산에 대한 L(+)-락트산의 함량비는 $1.2{\sim}78.4$였다.

  • PDF

한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성 (Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant)

  • 박종길;윤석영;오세종;신정걸;백영진
    • 한국식품과학회지
    • /
    • 제35권6호
    • /
    • pp.1244-1247
    • /
    • 2003
  • 발효 및 유산균 제품에 모유만을 먹은 생후 3개월된 유아의 분변으로부터 bromocresol pule을 함유한 MRS 배지에서 노란색의 집락을 형성하는 균주들을 내산성 및 담즙산 내성이 우수한 13종의 Lactobacillus 균주들을 분리하였으며 당발효성 및 생화학적 실험을 토대로 분리된 유산균들을 동정하였다. 최종적으로 선발한 균주를 L. acidophilus로 KY1909로 명명하였다. Lactic acid 생성 능력을 평가한 후 이성질체를 분석한 결과 상업적으로 이용되는 L. acidophilus NCFM, L. acidophilus CH5, L. acidophilus NOCKS 균주들은 전체 lactic acid 중에서 L(+) form이 차지하는 비율이 각각 52.49, 40.63 및 63.13%로 나타났으나, L. acidophilus KY1909는 L(+) lactic acid의 비율이 93.96%로 나타났다.

Hepatoprotective Effect of Lactic Acid Bacteria

  • BAN SONG-VI;HUH CHUL-SUNG;AHN YOUNG-TAE;LIM KWANG-SEI;BAEK YOUNG-JIN;KIM DONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.887-890
    • /
    • 2005
  • To evaluate the hepatoprotective activity of lactic acid bacteria, their effects on tert-butylperoxide (t-BHP)-induced hepatotoxicity in mice were measured. When lactic acid bacteria at doses of 0.5 and 2 g (wet weight)/kg were orally administered to mice with t-BHP-induced liver injury, these bacteria significantly inhibited the increase of plasma alanine aminotransferase and aspartate aminotransferase activities by $17-57\%$ and $57-66\%$ of the t-BHP control group, respectively. However, these lactic acid bacteria did not protect cytotoxicity induced by t-BHP against HepG2 cells. The inhibitory effects of these lactic acid bacteria at a dose of 15 g/kg were comparable with that of diphenyl dimethyl bicarboxylate at a dose of 0.2 g/kg, which has been used as a commercial hepatoprotective agent. Among these lactic acid Jacteria, Bifidobacterium longum HY8001 exhibited the most potent hepatoprotective effect. These orally administered lactic acid bacteria inhibited liver lipid peroxidation on t-BHP-induced hepatotoxicity of mice. We suggest that lactic acid bacteria may be an effective agent against liver injury.

Hepatoprotective Effect of Lactic Acid Bacteria, Inhibitors of $\beta$-Glucuronidase Production Against Intestinal Microflora

  • Han Song Yi;Huh Chul Sung;Ahn Young Tae;Lim Kwang Sei;Baek Young Jin;Kim Dong Hyun
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.325-329
    • /
    • 2005
  • The hepatoprotective activity of lactic acid bacteria (Lactobacillus brevis HY7401, Lactobacillus acidophilus CSG and Bifidobacterium longum HY8001), which inhibited $\beta$-glucuronidase productivity of intestinal microflora, on t-BHP- or CCl$_4$-induced hepatotoxicity of mice were evaluated. These oral administration of lactic acid bacteria lowered $\beta$-glucuronidase production of intestinal microflora as well as Escherichia coli HGU-3. When lactic acid bacteria at a dose of 0.5 or 2 g (wet weight)/kg was orally administered on CCl$_4$-induced liver injury in mice, these bacteria significantly inhibited the increase of plasma alanine transferase and aspartate transferase activities by $17-57\%$ and $57-66\%$ of the $CCI_4$ control group, respectively. These lactic acid bacteria also showed the potent hepatoprotective effect against t-BHP-induced liver injury in mice. The inhibitory effects of these lactic acid bacteria were more potent than that of dimethyl diphenyl bicarboxylate (DDB), which have been used as a commercial hepatoprotective agent. Among these lactic acid bacteria, L. acidophilus CSG exhibited the most potent hepatoprotective effect. Based on these findings, we insist that an inhibitor of $\beta$-glucuronidase production in intestine, such as lactic acid bacteria, may be hepatoprotective.