• Title/Summary/Keyword: D-galactose

Search Result 243, Processing Time 0.025 seconds

Characterization and Distribution of Glycoconjugates in the Intestines of Sebastes schlegeli, Halichoeres poecilopterus, Bryzoichthys lysimus, and Takifugu pardalis. (조피볼락, 용치놀래기, 송곳니베도라치 및 졸복 장관의 복합당질 성상 및 분포)

  • Jeong, Gil-Nam
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.782-788
    • /
    • 2008
  • The aim of this work is to show differences in the pattern of glycoconjugate composition in the intestines of four teleostean species (Sebastes schlegeli, Halichoeres poecilopterus, Bryzoichthys lysimus, and Takifugu pardalis). We compared four regions of all species studied. The specimens were processed and stained with nine kinds of biotinylated lectins (DBA, SBA, PNA, BSL- I , RCA- I , sWGA, UEA- I , LCA and Con A). Except for Sebastes schlegeli, no differences between regions were observed. The intestinal epithelium of Halichoeres poecilopterus possessed D-glucose/mannose residues in all regions. ${\beta}$-N-acetyl-D-galactosamine was distinctive along the intestines, although the pattern of diversity was different in Sebastes schlegeli, Bryzoichthys lysimus, and Takifugu pardalis. Additionally, the occurrence of Galactose-${\beta}$-1,3-N-acetyl-D-galactosamine and ${\alpha}$-D-galactose were confirmed in the proximal, middle, and distal intestine of Sebastes schlegeli, while rectal intestine lacked these sugar residues. Along with ${\beta}$-N-acetyl-D-galactosamine, ${\beta}$-N-acetyl-D-glucosamine and D-glucose/mannose were also determined in Bryzoichthys lysimus. Galactose-${\beta}$-1,3-N-acetyl-D-galactosamine, D-galactose, and D-glucose/mannose were also present in Takifugu pardalis.

Homogeneous Enzyme-linked Binding Assay for Mistletoe Lectin I Based on the Mistletoe Lectin I/D-galactose Interaction (Mistletoe lectin I/D-galactose의 인식결합에 기초한 Mistletoe lecti I에 대한 용액상 효소결합분석법에 관한 연구)

  • Rhee Paeng, Insook;Lee, Eun Ah;Chon, Chong Soon
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.624-629
    • /
    • 2000
  • A simple and rapid homogeneous enzyme-linked binding assay for mistletoe lectin I(ML I) was developed using a coupled enzyme system of malate dehydrogenase (MDH) and D-galactose. A highly substituted MDH-galactose conjugate was prepared by employing an isothiocyanate method for formation of thiourea bond. In the presence of ML I, ML I inhibits the activity of the conjugate based on the ML I/D-galactose specific interaction. Thus, the concentration of ML I can be related to the homogeneous inhibition of the MDH-galactose conjugate. Using this method. ML I can be measured at the level of microgram per milliliter within 10 minutes.

  • PDF

Clinical and Laboratory Characteristics of Galactokinase Hyperactivity (GALK Hyperactivity로 인한 갈락토스혈증의 임상적 특성에 관한 연구)

  • Yang, Seung Do;Lee, Jungho;Shin, Young Lim;Lee, Dong Hwan;Hong, Yong Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • Purpose: Galactose is metabolized to galactose-1-phosphate by galactokinase (GALK), galactose-1-phosphate uridyltransferase (GALT) and UDP-galactose-4-epimerase (GALE), and galactosemia occurs when each enzyme is deficient. In Korea, unlike foreign countries, classic galactosemia is rare and transient galactosemia due to GALK hyperactivity is reported, but studies on frequency, clinical significance, and genetic variation are lacking. In this study, we analyzed the clinical characteristics of patients with galactosemia due to GALK hyperactivity. Methods: We investigated 85 patients who had an elevated galactose level in the neonatal screening test without deficiency of enzymes at Department of Pediatrics, Seoul & Bucheon Soonchunhyang University Hospital from January 2008 to June 2016. We investigated the level of galactose, galactose-1-phosphate, GALK and duration of galactose normalization, and analyzed the correlation between GALK elevation and galactose, galactose-1-phosphate and duration of galactose normalization. And the levels of galactose, galactose-1-phosphate, and duration of galactose normalization were compared between the galactose-free formula feeding group and non-feeding group. Results: Mean age of visit was $26.7{\pm}16.1days$. Duration of galactose normalization was $35.3{\pm}20.5days$. Mean galactose level was $18.5{\pm}7.3mg/dL$ in the neonatal screening and follow-up galactose level in serum was $2.3{\pm}5.4mg/dL$. The mean value of galactose-1-phosphate was $6.0{\pm}4.7mg/dL$ and the mean GALK level was $3.84{\pm}1.28{\mu}mol/Hr/gHb$. There was no significant correlation between GALK levels and galactose levels in the neonatal screening test (P=0.351), and we analyzed the correlation between GALK levels and follow-up galactose levels in serum, there was no significant correlation (P=0.101). There was a significant correlation between GALK levels and galactose-1-phosphate (P=0.015), and the correlation between GALK levels and duration of galactose normalization was not statistically significant (P=0.176). 49% of the patients were fed galactose-free formula, and 45% were not. Galactose and galactose-1-phosphate levels in the neonatal screening test were statistically significantly higher (P=0.004, 0.034) in using galactose-free formula group. Duration of galactose normalization was not related to the use of galactose-free formula (P=0.266, 0.249). Conclusion: Galactosemia due to GALK hyperactivity seems to be a temporary phenomenon and may not require galactose restriction. More research is needed on the role of the nuclear protein, racial traits and genetic variations in Korean patients.

  • PDF

Studies on the Chemical Structure of the New Polysaccharide C - (The New Polysaccharides of Gum Tragacanth. II) - (Tragacanth gum 의 신다당류(新多糖類) C 의 화학구조(化學構造) - Tragacanth gum의 신다당류(新多糖類)에 관(關)한 연구(硏究) 제2보(第二報) -)

  • Lee, Sung-Hwan
    • Applied Biological Chemistry
    • /
    • v.3
    • /
    • pp.25-48
    • /
    • 1962
  • The polysaccharide C prepared from gum tragacanth powder (U. S. P. grade) by the precipitation method with 85% ethanol was a neutral polysaccharide, $[{\alpha}]^{30}_D-72.2$. The polysaccharide C consisted of L-rhamnose, D-xylose, L-arabinose and D-galactose in the molar ratio 2:1:17:9 (Table 1, 2, 3, ). The polysaccharide C was methylated with dimethylsulphate and 40% NaOH, and Purdies regent. The hydrolyzate of fully methlated product ($[{\alpha}]^{22}_D-102$ in chloroform, the methoxy content 40.6%) was composed of 2, 3, 5-tri-O-methyl-L-arabofuranose (I), 3,4-di-O-methyl-L-rhamnopyranose (II), 2,3-di-O-methyl-D-xylose (III), 2,3,4-tri-O-methyl-D-galactopyranose (IV), 2,4-di-O-methyl-L-arabopyranose (?), 2,4-di-O-methyl-D-galactose(VI), 2-O-methyl-D-arabinose (VII), and L-arabopyranose(VIII) (Table 4, 5, and Fig. 4). The first partial hydrolysis (A) of the polysaccharide C with 0.05N-HCl for 4.5 hours at $80-85^{\circ}C$ released only L-arabinose: the second hydrolysis (B) with 0.1N-HCl for 5 hours at $80-85^{\circ}C$, L-arabinose and D-galactose; and the third hydrolysis (C) with 0.3N-HCl at $90-95^{\circ}C$ in sealed tube, L-rhamnose, D-xylose, L-arabinose and D-galactose. From the unhydrolyzate A' were found L-rhamnose, D-xylose, L-arabinose, and D-galactose; from B' L-rhamnose, d-xylose, L-arabinose and D-galactose; and from C' D-xylose and D-galactose respectively (Table 6). The periodate consumption and formic acid production of the polysaccharide C were measured at various time intervals. After 120 hours periodat was consumed by 1.23 mole per $C_5H_8O_4$ and formic acid was produced 0.78 mole per $C_5H_8O_4$ (Table 7). Although a definite chemical structure for this polysaccharide C may not be formulated, experimental data, especially, from methylation, partial hydrolysie and determination of its molar ratio, and periodate analysis showed that the polysaccharide C is a highly branched polysaccharide and would be constructed of galactoaraban as a main chain residue and L-arabofuranose, D-galactopyranosyl $(1{\rightarrow}1)$-L-arabofuranose, D-xylopyranosyl $(1{\rightarrow}2)$-L-rhamnopyranosyl $(1{\rightarrow}1)$-L-arabofuranose, and L-rhamnopyranosyl $(1{\rightarrow}1)$-arabofuranose, and D-galactopyranosyl-$(1{\rightarrow}2)$-L-arabopyranosyl-$(1{\rightarrow}1)$-I-arabofuranose as a branch chain or end group (page 21).

  • PDF

Enzymatic Production of D-Tagatose, a Sugar-substituting Sweetener, from D-Galactose

  • Noh, Hoe-Jin;Kim, Pil
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.68-75
    • /
    • 2000
  • D-Tagatose is a potential bulking agent in food as a non-calorific sweetener. To produce D-tagatose from cheaper resources, plasmids harboring the L-arabinose isomerase gene (araA) from Escherichia coli was constructed because L-arabinose isomerase was previously suggested as an enzyme that mediates the bioconversion of galactose to tagatose as well as that of arabinose to ribulose. In the cultures of recombinant E.coli with pTC101, which harboring araA of E.coli, tagatose was produced from galactose in 9.9 % yield. The enzyme extract of E.coli containing pTC101 also converted galactose into tagatose in 96.4 % yield. For the economic production of D-tagatose, an L-arabinose isomerase of E.coli was immobilized using covalent binding on agarose. While the free L-arabinose isomerase produced tagatose with the rate of 0.48 mg/U$.$day, the immobilized one stably converted galactose into average 7.5 g/l$.$day of tagatose during 7 days with higher productivity of 0.87 mg/U$.$day. In the scaled up immobilized enzyme system, 99.9 g/l of tagatose was produced from galactose with 20 % equilibrium in 48 hrs. The process was stably repeated additional 2 times with tagatose production of 104.1 and 103.5 g/l.

  • PDF

Optimization of Culture Conditions for D-Tagatose Production from D-Galactose by Enterobacter agglomerans. (Entrobacter agglomerans에 의한 D-Galactose로부터 D-Tagatose 생산조건의 최적화)

  • 오덕근;노회진;김상용;노봉수
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.250-256
    • /
    • 1998
  • D-Tagatose production from D-galactose was investigated using 35 type strains of American Culture Type Collection (ATCC) and Korean Collection for Type Cultures (KCTC) which have potential to produce D-tagatose. Enterobacter agglomerans ATCC 27987 was selected as a D-tagatose producing strain due to its short fermentation time and high production of D-tagatose. Optimization of the culture conditions for D-tagatose production by E. agglomerans ATCC 27987 was performed. Among various carbon sources, D-galactose was the most effective carbon source for D-tagatose production. As the D-galactose concentration was increased, cell growth and D-tagatose production increased. Effect of nitrogen sources on D-tagatose production was studied. Of inorganic nitrogen sources, ammonium sulfate was effective one for D-tagatose production and yeast extract was the most suitable organic nitrogen nutrient. The concentrations of inorganic compounds such as KH$_2$PO$_4$, K$_2$HPO$_4$, and MgSO$_4$$.$7H$_2$O were also optimized for D-tagatose production. The optimal medium was determined to contain D-galactose of 20 g/l, yeast extract of 5.0 g/l, (NH$_4$)$_2$SO$_4$ of 2.0 g/l, KH$_2$PO$_4$ of 5.0 g/l, K$_2$HPO of 5.0 g/l, and MgSO$_4$$.$7H$_2$O of 5 mg/l. The optimal environmental conditions in a 250-$m\ell$ flask were found to be pH of 6.0, temperature of 30$^{\circ}C$, and agitation speed of 150 rpm. D-tagatose of 0.41 g/l could be obtained in 24 h from 20 g/l D-galactose at the optimal culture condition without induction and cell concentration.

  • PDF

Enterobacter agglomerans TY-25 에 의한 D-Galactose로부터 D-Tagatose의 생산

  • 김상용;노회진;오덕근
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.490-494
    • /
    • 1997
  • A variety of microbial strains isolated from soil were tested for their ability to produce D-tagatose from D-galactose. An organism that can convert D-galactose into D-tagatose was selected and was identified as Enterobacter agglomerans. The cells grown on the induction medium containing 20 g/l arabinose were found to the best conversion potential among different carbohydrates and the conversion yield was about 15% when 20 gll galactose was used. The isolated crystals were obtained from the culture broth after the purification process such as treatment of ion resins, crystallization, and drying. The recovery yield was 70% after the purification. The crystals were identified as D-tagatose by the infrared spectroscopy, HPLC, specific optical rotation, and melting point.

  • PDF

Characterization of enzymatic activity of galactose epimerase-less mutant of Salmonella pullorum (Galactose epimerase결손 Salmonella pullorum 변이주의 효소활성)

  • Kim, Jong-bae
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.4
    • /
    • pp.781-785
    • /
    • 1994
  • Uridine diphosphate(UDP)-galactose-4-epimerase-less mutants of Salmonella pullorum were isolated after mutagenic treatment with ethidium bromide. When isolated gal E mutants of S. pullorum A2 and D1 were grown in the presence of galactose(0.1 W/V), they exhibited marked bacteriolysis in heart infusion broth. The mutant strains were further investigated the characteristics of enzymatic activities in the Leoloir galactose pathway. Isolated A2 and D1 strains were completely deficient in UDP-galactose-4-epimerase activity. And the activity of other enzymes involved in galactose metabolism were reduced significantly.

  • PDF

Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice

  • Shahroudi, Mahdieh Jafari;Mehri, Soghra;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • Objectives: Aging is an unconscious and gradual process that can lead to changes in biological systems. Induction of oxidative stress and apoptosis, hepatotoxicity and neurotoxicity are involved in the aging process. Regarding the antioxidant property of black seed oil, the aim of this study was to evaluate the anti-aging effect of Nigella sativa (N. sativa) oil on d-galactose-induced aging in mice. Methods: For induction of aging, D-galactose (500 mg/kg, subcoutaneously SC) was administrated to male mice for 42 days. Animals were treated with D-galactose alone or with b lack seed oil (0.1, 0.2, 0.5 mL/kg, intraperitoneally (ip)). Additionally, vitamin E (200 mg/kg) was used as a positive control. At the end of treatment, the malondialdehyde (MDA) and the glutathione (GSH) contents in brain and liver tissues were measured. Also, enzymes in serum, including aspartate aminotransferase (AST) and alanine amino transferase (ALT), were determined. The levels of the proteins Bax, Bcl2, caspase-3 (pro and cleaved) in brain and liver tissues were evaluated. Results: Administration of D-galactose (500 mg/kg, SC) for 42 days increased serum levels of ALT and AST, as well as the MDA content, in brain and liver tissues, but decreased the GSH content. Additionally, the levels of apoptotic proteins, including Bax, procaspase-3 and caspase-3 cleaved, were markedly increased. N. sativa oil (0.1 and 0.2 mL/kg) diminished the levels of the biochemical markers ALT and AST. Administration of black seed oil (0.1, 0.2 and 0.5 mL/kg) reduced lipid peroxidation and at doses 0.1 and 0.2 mL/kg significantly recovered the GSH content. The oil decreased Bax/Bcl2 levels and at 0.1 mL/kg down-regulated the expressions of caspase-3 (pro and cleaved) proteins in brain and liver tissues. Conclusion: Through its antioxidant and anti-apoptosis properties, black seed oil exhibited an anti-aging effect in a model of aging induced with D-galactose.

Substrate Specificities of ${\alpha}$-Galactosidase from Mortierella sp. (Mortierella sp. 유래 ${\alpha}$-Galactosidase의 기질특이성)

  • Park, Gwi-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.245-251
    • /
    • 2011
  • [ ${\alpha}$ ]Galactosidase was purified from a culture filtrate of Mortierella sp. by CM-sephadex C-50, and subsequent Sephadex G-100 column chromatography. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 56 kDa. $Gal^3Man^4$ ($6^3$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannotetraose), $Gal^{2,3}Man_5$ ($6^{2,3}$-di-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannopentaose), $Gal_2Man_3$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannotriose), $Gal^2Man_6$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannohexaose) and $Gal^2Man_5$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannopentaose), prepared from 3 types of microbial ${\beta}$-mannnanase, were used as substrates. $Gal^3Man_4$ and $Gal^2Man_3$ had a stubbed ${\alpha}$-galactosyl residue on the $2^{nd}$ and $3^{rd}$ mannose from the reducing end of mannotetraose and mannotriose, thus ${\alpha}$-galactosidase showed a preference for stubbed ${\alpha}$-galactosyl residue. ${\alpha}$-Galactosidase hydrolyzed $Gal^3Man_4$ more rapidly than $Gal^2Man_3$. However, ${\alpha}$-galactosidase hardly acted on $Gal^{2,3}Man_5$, $Gal^2Man_6$ or $Gal^2Man_5$. The enzyme hydrolyzed melibiose to galactose and glucose, raffinose to galactose and sucrose, and also stachyose to galactose and raffinose.