• Title/Summary/Keyword: D-Serine

Search Result 199, Processing Time 0.035 seconds

Purification and Characterization of a Subtilisin D5, a Fibrinolytic Enzyme of Bacillus amyloliquefaciens DJ-5 Isolated from Doenjang

  • Choi, Nack-Shick;Chung, Dong-Min;Han, Yun-Jon;Kim, Seung-Ho;Song, Jae-Jun
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.500-505
    • /
    • 2009
  • The fibrinolytic enzyme, subtilisin D5, was purified from the culture supernatant of the isolated Bacillus amyloliquefaciens DJ-5. The molecular weight of subtilisin D5 was estimated to be 30 kDa. Subtilisin D5 was optimally active at pH 10.0 and $45^{\circ}C$. Subtilisin D5 had high degrading activity for the A$\alpha$-chain of human fibrinogen and hydrolyzed the $B{\beta}$-chain slowly, but did not affect the $\gamma$-chain, indicating that it is an $\alpha$-fibrinogenase. Subtilisin D5 was completely inhibited by phenylmethylsulfonyl fluoride, indicating that it belongs to the serine protease. The specific activity (F/C, fibrinolytic/caseinolytic activity) of subtilisin D5 was 2.37 and 3.52 times higher than those of subtilisin BPN' and Carlsberg, respectively. Subtilisin D5 exhibited high specificity for Meo-Suc-Arg-Pro-Tyr-pNA (S-2586), a synthetic chromogenic substrate for chymotrypsin. The first 15 amino acid residues of the N-terminal sequence of subtilisin D5 are AQSVPYGISQIKAPA; this sequence is identical to that of subtilisin NAT and subtilisin E.

A CoMFA Study of Glycogen Synthase Kinase 3 Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a promising target in drug discovery. It is involved in multiple cellular processes and associated with the pathogenesis of several diseases. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of GSK-3 inhibitors to understand the structural basis for inhibitory activity. Comparative molecular field analysis (CoMFA) method was used to derive 3D-QSAR models. A reliable CoMFA model was developed using ligand-based alignment scheme. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.594 and a non-cross-validated correlation coefficient ($r^2$) of 0.943. Robustness of the model was checked by bootstrapping and progressive scrambling analysis. This study could assist in the design of novel compounds with enhanced GSK-3 inhibitory activity.

The Study of Age Estimation from Tooth using the Racemization of Aminoacid (아미노산의 라세미화 반응을 이용한 치아로부터의 연령감정에 관한 연구)

  • Hee-Kyung Kim;Chong-Youl Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.14 no.1
    • /
    • pp.43-55
    • /
    • 1989
  • The need of age estimation for identification was increased by complexity of society, and the tooth was used widely for age estimation because of less individual deviation than the other organ. The age estimation using the tooth had several methods. Recently, the one using the racemization of aminoacid in the tooth was admitted more accurate than the other methods, especially in old age. But, this study was not tried in our country, and I would report the result of experiment about age estimation using racemization of dentine. I selected 40-Whole dentine sample from extracted teeth, those were reserved in natural dried condition for 2 weeks~ 1year and calculated the estimation of age from the ratio of D-aminoacid and L-aminoacid (D/L ratio) using gaschromatography and the results were below. 1. The aminoacids showed apparent K/L ratio in dentine were aspartic acid, serine. 2. The aspartic acid showed the highest racemic rate and its rate was 0.0012$\pm$0.0003/yr. 3. The relation between the actual age and K/L ratio was very positive correlation(r+0.954) in the estimation of age using aspartic acid. 4. The deviation between the estimated age using D/L ratio of aspartic acid and actual age was $\pm$3.32.

  • PDF

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

Probing the movement of helix F region and the stepwise insertion of reactive site loop in $\alpha_1$-Antitrypsin variants

  • Baek, Je-Hyun;Lee, Cheolju;Kang, Un-Beom;Kim, Joon;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.63-63
    • /
    • 2003
  • $\alpha$$_1$-Antityrpsin is a member of the serine protease inhibitor (SERPIN) family that shares a common tertiary structure. The reactive site loop (RSL) of serpins is exposed at one end of the molecule for protease binding. Upon cleavage by a target protease, the RSL is inserted into the major $\beta$-sheet A, which is a necessary process for formation of a tight inhibitory complex. Various biochemical and structural studies suggest that the rate of the RSL insertion upon binding a target protease is critical for inhibitory activity, and it is thought that helix F region (thFs3A and helix F) located in front of $\beta$-sheet A, should be lifted for the loop insertion during complex formation.

  • PDF

Biochemical Characterization of Serine Proteases with Fibrinolytic Activity from Tenodera sinensis (Praying Mantis)

  • Kim, Yeong-Shik;Hahn, Bum-Soo;Cho, So-Yean;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.97-104
    • /
    • 2001
  • Three types of proteases (MEF-1, MEF-2 and MEF-3) were purified from the egg cases of Ten-odera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The proteases were assessed homogeneous by SDS-polyacrylamide gel electrophoresis and have molecular weight of 31,500, 32,900 and 35,600 Da, respectively. The N-terminal regions of the primary structure were compared and they were found to be different each other. MEFs readily digested the $A\alpha$ - and B$\beta$-chains of fibrinogen and more slowly the ${\gamma}$-chain. The action of the enzymes resulted in extensive hydrolysis of fibrinogen and fibrin, releasing a variety of fibrinopeptides. MEF-1 was inactivated by Cu$^{2+}$ and Zn$^{2+}$ and inhibited by PMSF and chymostatin. MEF-2 was inhibited by PMSF, TLCK. soybean trypsin inhibitor. MEF-3 was only inhibited by PMSF and chymostatin. Antiplasmin was not sensitive to MEF-1 but antithrombin III inhibited the enzymatic activity qf MEF-1. MEF-2 specifically bound to anti plasmin Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEFs was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 3$0^{\circ}C$. MEF-1 preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. In contrast, MEF-2 specifically cleaved the peptide bond between Arg23 and Gly24. D-dimer concentrations increased on incubation of cross-linked fibrin with MEF-1, indicating the enzyme has a strong fibrinolytic activity.ity.

  • PDF

Structure Determination of Antifungal KRF-001 Produced by Bacillus subtilis subsp. krictiensis (Bacillus subtilis subsp. krictiensis가 생산하는 항진균 물질 KRF-001의 구조 결정)

  • 김성기;이남경;정태숙;김영국;최진자;복성해
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.598-603
    • /
    • 1991
  • An antifungal mixture of six members (component A to F), KRF-001 produced by Bacillzts subtilis subsp. krictiensis was isolated from the fermentation broth. Molecular weight of component A to F was determined by FAB-MS to be 1042, 1056, 1056, 1070, 1070 and 1084 respectively. Various instrumental analyses (amino acid analysis, GC-MS, $^1H-NMR, ^1HH$ COSY NMR) revealed that the mixture was a homologous cyclic peptide composed of each one mole of glutamine, proline, tyrosine, serine, unusual $\beta$-amino acid and three moles of asparagine. The structural differences of component A to F were found in carbon number and terminal structure of the unusual $\beta$-amino acid. After determination of the sequence and stereochemistry of those amino acids, the tentative structure of KRF-001 was determined.

  • PDF

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Kang, Sang-Gu;Cha, Hyeon-Wook;Chang, Moo-Dng;Park, Eui-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.239-247
    • /
    • 2003
  • In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.

Phygicochemical Properties and Sensory evaluation with Doughnut of Yam (Dioscorea batatas) in Korea (한국산 긴마(Dioscorea batatas)의 물리화학적 특성 및 Doughnut에 대한 관능 검사)

  • 김화선
    • Korean journal of food and cookery science
    • /
    • v.9 no.2
    • /
    • pp.74-77
    • /
    • 1993
  • In an attempt of develop composite flours, Korea yam (Dioscorea batatas) was investigated in terms of the physicochemical properties and sensory evaluation with doughnut. Yam had 76.10% of water, 18.63% of carbohydrate, 4.03% of crude protein, 0.27% of fat, 1.02% of ash and 17.20% of starch. Compositions of the free sugar in yam flour were glucose, fructose and sucrose, which of amounts was about 30% respectively. The major free amino acids of yam were Serine, Arginine & Alanine, which consisted of 70.3% of the total free amino acids. Most amino acids of yam were Glutamic acid, Aspartic acid & Arginine which consisted of 47% of total amino acids. As the amount of yam flour in doughnut was increased the oil absorption rate was lower. In the sensory evaluation, control and 10% flour group did not show any significant difference in all category of sensory characteristics.

  • PDF

Effect and mechanism of docosahexaenoic acid on the proliferation of dermal papilla cells (Docosahexaenoic acid의 모유두세포 증식 효능 및 기전)

  • Ko, Jiyeon;Oh, Il-Joong;Kang, Jung-Il;Choi, Youn Kyung;Yoon, Hoon-Seok;Yoo, Eun-Sook;Ko, Chang-Ik;Ahn, Yong-Seok
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.84-89
    • /
    • 2019
  • Docosahexaenoic acid (DHA), a principal of mackerel-derived fermented fish oil, increases the proliferation of dermal papilla cells (DPCs) via the upregulation of cell cycle-associated proteins such as cyclin D1 and cdc2 p34, and might promote hair-growth. However, the intracellular mechanisms that underlie the action of DHA in the proliferation of DPCs have not been investigated fully. In this study, we addressed the action mechanisms of DHA to trigger the activation of anagen in DPCs. DHA activated β-catenin signaling by the increased phosphorylation at serine 552 and serine 675 as well as the translocation and accumulation of activated β-catenin into the nucleus. In the other hand, DHA inhibited canonical TGF-β/Smad signaling by the decreased phosphorylation of Smad2/3. Taken together, the results indicate that DHA might stimulate anagen signaling via the activation of Wnt/β-catenin pathway, while the inactivation of canonical TGF-β signaling pathway in DPCs.