• Title/Summary/Keyword: D-MIMO

Search Result 248, Processing Time 0.029 seconds

Griffiths' Algorithm Based Adaptive LMMSE Equalizers for HSDPA MIMO Systems (HSDPA MIMO 시스템을 위한 Griffiths 알고리즘 기반 적응 LMMSE Equalizer)

  • Joo, Jung-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.28-34
    • /
    • 2011
  • In CDMA-based systems, recently, researches on chip-level equalization have been studied in order to improve receiving performance when supporting high-rate data services. In this paper, we propose Griffiths' algorithm based chip-level adaptive LMMSE equalizers for HSDPA MIMO systems using D-TxAA (dual stream transmit antenna array). First, we will derive two possible structures of Griffiths' algorithm based equalizer, and then compare their performance through computer simulations in various mobile channel environments.

Design and Performance Evaluation of MIMO(Multiple Input Multiple Output) System Using OTFS(Orthogonal Time Frequency Space) Modulation (OTFS(Orthogonal Time Frequency Space) 변조를 사용하는 MIMO(Multiple Input Multiple Output) 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.444-451
    • /
    • 2017
  • In this paper, we have evaluated and analyzed OTFS(Orthogonal Time Frequency Space) modulation and OTFS-MIMO(Multiple Input Multiple Output) system. OTFS modulation can concisely compensate delay-Doppler spreading effect by using 2D(2-Dimension) iDFT (inverse Discrete Fourier Transform) and DFT(Discrete Fourier Transform) operation. It enables OTFS system to transmit high-speed data. Especially, OTFS-MIMO system can transmit all data streams without performance degradation on high Doppler frequency channel. As simulation results, we have confirmed that $1{\times}1$ OTFS system's achievable rate is a similar to each stream of $2{\times}2$ OTFS-MIMO system. That is, we have also confirmed that $2{\times}2$ MIMO system can completely achieve double achievable rate in comparison with OTFS system on high Doppler frequency channel.

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

Statistical Characteristic Analysis of the Spatial Channel Model for Performance Evaluation of MIMO Systems (MIMO 송수신 시스템 성능 평가를 위한 공간 채널 모델의 통계적 특성 분석)

  • Shin, Junsik;Suh, Junyeub;Kang, Hosik;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.748-757
    • /
    • 2015
  • MIMO systems utilizing multiple antenna transmission and reception is one of the key technologies to enhance the capacity of 5G wireless communications. In order to obtain an appropriate performance evaluation of MIMO techniques, the usage of wireless channel model reflecting spatial channel characteristics is required, such as the 3-dimensional spatial channel model(3D SCM) proposed by 3GPP TR36.873 documentation. In this paper, we implement and verify the channel simulation environment based on 3D SCM, to present and compare the characteristics of UMi and UMa environments. We also apply MIMO transmission to the UMa scenario to investigate the channel correlation among antenna elements with different array distances and to identify the corresponding throughput changes. By evaluating the channel power correlations for randomly distributed users within the sector for different horizontal and vertical antenna distances, we present the statistical characteristics which determine the transmission performance under the SCM environment.

A Study on LMMSE Receiver for Single Stream HSDPA MIMO Systems using Precoding Weights (Single Stream HSDPA MIMO 시스템에서 Precoding Weight 적용에 따른 LMMSE 수신기 성능 고찰)

  • Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.3-8
    • /
    • 2013
  • In CDMA-based systems, recently, researches on chip-level equalization have been studied in order to improve receiving performance when supporting high-rate data services. In this paper, we consider a chip-level LMMSE (linear minimum mean-squared error) receiver for D-TxAA (dual stream transmit antenna array) based single stream HSDPA MIMO systems using precoding weights. First, we will derive precoding weights for maximizing the total instantaneous received power. We will also analyze the effects of both transmit delay of precoding weights and mobile velocity on chip-level LMMSE receivers, which is verified through computer simulations in various mobile channel environments.

Capacity Bounds on the Ergodic Capacity of Distributed MIMO Systems over K Fading Channels

  • Li, XingWang;Wang, Junfeng;Li, Lihua;Cavalcante, Charles C.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2992-3009
    • /
    • 2016
  • The performance of D-MIMO systems is not only affected by multipath fading but also from shadowing fading, as well as path loss. In this paper, we investigate the ergodic capacity of D-MIMO systems operating in non-correlated K fading (Rayleigh/Gamma) channels. With the aid of majorization and Minkowski theory, we derive analytical closed-form expressions of the upper and lower bounds on the ergodic capacity for D-MIMO systems over non-correlated K fading channels, which are quite general and applicable for arbitrary signal-to-noise ratio (SNR) and the number of transceiver antennas. To intuitively reveal the impacts of system and fading parameters on the ergodic capacity, we deduce asymptotic approximations in the high and low SNR regimes. Finally, we pursue the massive MIMO systems analysis for the lower bound and derive closed-form expressions when the number of antennas at BS grows large, and when the number of antennas at transceivers becomes large with a fixed and finite ratio. It is demonstrated that the proposed expressions on the ergodic capacity accurately match with the theoretical analysis.

MIMO Channel Analysis Method using Ray-Tracing Propagation Model (전파예측모델을 이용한 MIMO 채널 분석 방법)

  • 오상훈;명로훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.759-764
    • /
    • 2004
  • This paper proposes a method that estimates MIMO channel characteristics analytically using a 3D ray tracing propagation model. We calculate the discrete spatial correlation between sub-channels by considering phase differences of paths, and using this, estimate the mean capacity upper bound of MIMO channel by Jensen's inequality. This analysis model is a deterministic model that do not approach stochastically through measurement nor approach statistically through Monte-Carlo simulations, so this model has high efficiency for time and cost. And based on the electromagnetic theory, this model may analyze quantitatively the parameters which can affect the channel capacity - antenna pattern, polarization mutual coupling, antenna structure and etc. This model may be used for the development of an optimal antenna structure for MIMO systems.

Efficient Power Allocation Algorithms for Adaptive Spatial Multiplexing MIMO Systems (적응 공간 다중화 MIMO 시스템을 위한 효율적인 전력 할당 알고리즘)

  • Shin, Joon-Ho;Kim, Dong-Geon;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.232-240
    • /
    • 2011
  • While the water-filling algorithm is an efficient power allocation method that maximizes the ergodic capacity of adaptive MIMO systems, its excessive residual power causes spectrum loss in real systems employing discrete modulation indices. In this paper we propose new power allocation algorithms that improve the spectral efficiency of MIMO systems by efficiently reallocating the residual power of the water-filling algorithm. We apply the proposed algorithms to the adaptive turbo-coded MIMO system to verify their performance through computer simulation in various environments. Simulation results show that the spectral efficiency of the proposed algorithms is better than that of the water-filling algorithm by about 8.9% at SNR of 20dB in Rayleigh fading environments.

Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems (MIMO-OFDM 시스템에서 에너지 효율성을 위한 기계 학습 기반 적응형 전송 기술 및 Feature Space 연구)

  • Oh, Myeung Suk;Kim, Gibum;Park, Hyuncheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.407-415
    • /
    • 2016
  • Recent wireless communication trends have emphasized the importance of energy-efficient transmission. In this paper, link adaptation with machine learning mechanism for maximum energy efficiency in multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) wireless system is considered. For reflecting frequency-selective MIMO-OFDM channels, two-dimensional capacity(2D-CAP) feature space is proposed. In addition, machine-learning-based bit and power adaptation(ML-BPA) algorithm that performs classification-based link adaptation is presented. Simulation results show that 2D-CAP feature space can represent channel conditions accurately and bring noticeable improvement in link adaptation performance. Compared with other feature spaces, including ordered postprocessing signal-to-noise ratio(ordSNR) feature space, 2D-CAP has distinguished advantages in either efficiency performance or computational complexity.

Real-time Implementation of Phased RF Sub-Array MIMO Algorithm for Radar (레이다용 Phased RF Sub-Array MIMO 알고리즘 실시간 구현)

  • Wansik Kim;Hwanyong Yeo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.517-522
    • /
    • 2023
  • Existing radars have been developed by applying RF sub-array algorithms, and recently, fully digital Multiple-Input Multiple-Output (MIMO) radar algorithms have been implemented for vehicle radars. In this paper, the radar algorithm applying the Phased MIMO method to the hardware of the RF sub-array method, which is an unsecured technology, was implemented and verified in real time. In order to secure RF sub-array Phased MIMO algorithm technology, a hardware structure for FPGA-based real-time signal processing was presented, and performance was first predicted through design and simulation. Through this, the digital signal of FPGA-based broadband MIMO FMCW radar The processing hardware was developed, and the Phased MIMO radar algorithm of the RF sub-Array method was finally implemented and verified in real time. Based on this, it is judged that it will be possible to secure and apply core technologies necessary for terahertz band radar in the future.