• Title/Summary/Keyword: D-Amino acid

Search Result 1,166, Processing Time 0.025 seconds

Regulation of Gene Expression for Amino Acid Biosynthesis in the Yeast, Sacchromyces cerevisiae

  • Lea, Ho Zoo
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1995.10b
    • /
    • pp.82-82
    • /
    • 1995
  • Regulation of enzyme synthesis by transcriptional and translational control systems provides rather stable adaptation to change of amino acid level in the growth medium, while manipulation of enzyme activity through endproduct feedback inhibition represents rather short-term and reversible ways of adjusting metabolic fluctuation of amino acid level. Various control mechanisms interplay to regulate genes encoding enzymes for amino acid biosynthesis in the yeast, Sacchromyces cerevisiae. When amino acids are in short supply, genes under a cross-pathway regulatory mechanism Or general amino acid control (general control) increase their action, in which Gcn4p is the major positive regulator of gene expression. When cells are cultured in minimal medium, basal level expression is also regulated by supplementary control elements, where inorganic phosphate level is additionally involved. Most of amino acid biosynthetic genes are also regulated by the level of endproduct of the pathway. This pathway-specific regulatory mechanism is called specific amino acid control (specific controD, under which gene expression is reduced when endproduct is present in the medium. Derepression of a gene through general control can be usually overridden by repression through specific control, where the endproduct level of that particular pathway is high and not limiting. In this presentation, regulatory factors for basal level expression and general control of yeast amino acid biosynthesis will be discussed, m addition to pathway-specific repression patterns and interaction between CrOSS- and specific-control mechanisms. Preliminary results are also presented from the investigation of the cloned genes in the threonine biosynthetic pathway of the yeast. yeast.

  • PDF

Development of Chiral Stationary Phases for the Gas Chromatographic Separation of Amino Acid Enantiomers New diamide chiral stationary phase (아미노산 광학이성질체 분리를 위한 가스크로마토그라피용 키랄 고정상의 개발 -새로운 diamide계 키랄 고정상의 응용-)

  • Park, Man-Ki;Yang, Jeong-Sun;Lee, Mi-Yung
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.129-139
    • /
    • 1989
  • New diamide chiral stationary phases of four systematically substituted optically active N-(N-benzoyl-L-amino acid)-anilide synthesized from L-valine, L-leucine, L-isoleucine, and L-phenylalanine were described. The behaviors of these diamides as optically active stationary phases for the separation of N-trifluoroacetyl-D,L-amino acids were examined with respect to separation factors(${\alpha}$) and thermodynamic properties of interaction. The separation of twelve N-trifluoroacetyl-D,L-amino acid isopropyl esters were improved by the order of N-(N-benzoyl-L-leucyl)-anilide>N-(N-benzoyl-L-isoleucyl)-anilide>N-(N-benzoyl-L-valyl)-anilide>N-(N-benzoyl-L-phenylalanyl)-anilide. Eight amino acid derivatives with non-polar R-group and threonine, serine, aspartic acid, and glutamic acid enantiomers were separated on N-(N-benzoyl-L-leucyl)-anilide as chiral stationary phase with good separation factor between 1.07-1.25. The separation factors decreased with respect to increasing column temperature. Possible working temperature of diamide phase was between $130-190^{\circ}C$ for N-(N-benzoyl-L-phenylalanyl)-anilide and $130-180^{\circ}C$ for other three diamide phases. The differential Gibb's free energy (${\Delta}{\Delta}G$) of enantiomers was in the range of -100--180 cal/mol for ten amino acids and -40--60 cal/mol for alanine and aspartic acid.

  • PDF

Preparation of an Amino Acid Based DTPA as a BFCA for Radioimmunotherapy

  • Choi, Kang-hyuk;Hong, Young-Don;Pyun, Mi-Sun;Choi, Sun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1194-1198
    • /
    • 2006
  • For the purpose of developing more effective chelating agents, we have synthesized a diethylene triamine pentaacetic acid(DTPA) analogue by using an amino acid. S-(N-Boc-aminophenyl)-Cys(t-Bu4-DTPA) methylester was prepared in 6 steps with total yield of 47.9%. For the sake of introducing a biomolecule to the DTPA derivative, a selective hydrolysis was performed with 3 M HCl/Ethylacetate = 1 : 3 ($25{^{\circ}C}$, 30 min, vigorous stirring). $^{166}Ho$-Cys-DTPA and $^{166}Ho$-Biotin-Cys-DTPA were prepared by mixing $^{166}Ho$ with DTPA derivatives at room temp in a HCl solution (pH = 5) and the radiochemical stabilities (> 99%) were maintained for over 6 hrs in vitro.

Gamakamide C and D as Two New Analogues of Bitter-Tasting Cyclic Peptide with Hydantoin Structure from Oyster Crassostrea gigas

  • Jang, Jun Ho;Park, Taesung;Lee, Jong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.131-135
    • /
    • 2015
  • Two new bitter-tasting cyclic peptides comprising six amino acids, namely gamakamide C and D, were isolated from cultured oysters Crassostrea gigas. Dimethylaminoazobenzene sulfonyl-amino acid analysis detected Val and Leu in gamakamide C and Ile and Leu in gamakamide D. The molecular formula of gamakamide C was determined as $C_{43}H_{60}N_{7}O_8S$ by high-resolution fast atom bombardment mass spectroscopy (HR FAB-MS) ($[M+H]^+m/z822.4200{\Delta}-2.4mmu$), and that of gamakamide D was determined as $C_{43}H_{62}N_7O_8S$ by HR FAB-MS ($[M+H]^+m/z836.4379{\Delta}-2.0mmu$). Comparison of amino acid analyses and fragment ions by MS/MS among gamakamide C, D, and E (known), the structures of gamakamide C and D were confirmed $as-{\small{L}}-Val-{\small{L}}-Met(SO)-{\small{L}}-NMe-Phe-{\small{L}}-Leu-{\small{D}}-Lys-{\small{L}}-Phe-$ and $-{\small{L}}-Ile-{\small{L}}-Met(SO)-{\small{L}}-NMe-Phe-{\small{L}}-Leu-{\small{D}}-Lys-{\small{L}}-Phe-$, respectively.

Model to Predict Absorbed Amino Acid Supply at the Proximal Duodenum in Growing Beef Cattle

  • Yan, Xianghua;Xu, Zirong;Zhang, Wen-ju;Wang, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.358-363
    • /
    • 2005
  • Five crossbred beef cattle (Simmental${\times}$yellow cattle, Shantung Province) fitted with permanent cannulae in the rumen and T-type cannulae at the proximal duodenum and terminal ileum, were fed five different diets containing corn, cotton meal or soybean meal and ammoniated straw to determine the dry matter, crude protein and amino acid flows in duodenal and ileum digesta, and to calculate the regression equations between theoretical and experimental concentration of AA in duodenal digesta. The results showed that there was a strong correlation between experimental (g/d, y) and theoretical CP flows (g/d, x) at the proximal duodenum, the $R^2$-value regression equation of crude protein is very high (0.9636). The $R^2$-value regression equation of the limiting amino acid (such as Met or Lys) is high (0.7573 or 0.9252 respectively). This results indicated that we can formulate better diets fed to beef cattle according to the theoretical amino acid concentration. A mathematical model has been successfully constructed for predicting the supply of absorbed amino acids at the proximal duodenum in growing beef cattle.

Micro-Determination of D-Amino Acids in Milk by using Column Switching System (Column-Switching System을 이용한 우유속의 D-아미노산의 미량정량)

  • Lee, Sun Haing;Kim, Kyoung Hee;Lee, Young Cheol;Kim, Sang Tae
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.257-265
    • /
    • 1995
  • Free amino acids were isolated from milk and their absolute amounts were determined by reversed phase high performance liquid chromatography after derivatization with dansyl chloride. The determination of D- and L-amino acids was based on achiral separation on a C18 column. It was found that milk contained totally 41.00 mg DL-amino acids in 100 mL milk. The level of D-amino acids to L-amino acids was determined by a column-switching system combining an achiral reversed phase separation and chiral chelate additive. The chiral separation was carried out with addition of the chiral Cu(N-benzyl-L-proline)2 chelate to the mobile phase in reversed phase liquid chromatography. It was found that the determination of 16 different amino acids is feasible in the milk sample with a C18 column separation and 12 D-amino acids out of the 16 amino acids can be determined via the column-switching system with chiral separation. 2.05% of D-glutamic acid and 2.93% of D-alanine were found in milk.

  • PDF

Studies on the Processing of Rapid- and low Salt-Fermented Liquefaction of Anchovy(Engrulis japonica) (II) - Changes in the Amino Acids from Oligopeptides during Fermentation - (저식염 속성 멸치 발효액화물 가공에 관한 연구(II) - 숙성 중 oligopeptide 아미노산 함량변화 -)

  • Kang, Tae-Jung;Cho, Kyu-Ok;Park, Choon-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.4
    • /
    • pp.363-376
    • /
    • 2002
  • In order to establish the processing conditions for salt-fermented liquefaction of anchovy(Engrulis japonica), changes in the amino acid composition from oligopeptides during fermentation periods were analyzed. Experimental sample A: chopped whole anchovy, adding 20% water, heating at $50^{\circ}C$ for 9 hrs and then adding 10% NaCl. Sample B: chopped whole anchovy, adding 20% water, heating at $50^{\circ}C$ for 9 hrs and then adding 13% NaCl. Sample C: chopped whole anchovy adding 13% NaCl. Sample D: whole anchovy adding 17% NaCl. The total amino acids from oligopeptides in fermented liquefaction of anchovy increased in early fermentation period and reached highest level, and then they declined irregularly during fermentation. Their maximum amounts were just after heating at $50^{\circ}C$ for 9 hrs in sample A, after 15 days in sample B, and after 60 days in samples C and D. The fermented liquefaction of anchovy extracts were rich in glutamic acid, aspartic acid, proline, glycine, alanine, lysine and valine. However, the contents of most amino acids fluctuated by the experimental specimens and fermenting periods. Among them glutamic acid was the most abundant amino acid which was occupied $0.6{\sim}27.7%$(average 24.0%) in the content of total amino acids from oligopeptides. The contribution of the amino acid composition from oligopeptides to extractive nitrogen was occupying average 20.8 and 17.5% in rapid- and low salt-fermented liquefaction(sample A, B and C) and traditional fermented liquefaction(sample D), respectively.

Kinetic Study on the Enzymatic Production of D-Alanine from D-Aspartic Acid

  • Lee, Jae-Heung;Sung, Moon-Hee;Jeon, Yeong-Joong
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • An enzymatic reaction for the production of D-alanine from D-aspartic acid and pyruvate as substrates by a thermostable D-amino acid aminotransferase (D-AAT) was investigated at various conditions In the temperature range of 40-70$\^{C}$ and pH range of 6.0-9.5. The D-AAT was produced with recombinant E. coli BL21, which hosted the chimeric plasmid pTLK2 harboring the D-AAT from the novel thermophilic Bacillus sp. LK-2. The enzyme reaction was shown to follow the Ping Pong Bi Bi mechanism. The K$\_$m/ values for D-aspartic acid and pyruvate were 4.38 mar and 0.72 mM, respectively. It was observed that competitive inhibition by D-alanine, the product of this reaction, was evident with the inhibition constant K$\_$i/ value of 0.1 mM. A unique feature of this reaction scheme is that the decorboxylation of oxaloacetic acid, one of the products, spontaneously produces pyruvate. Therefore, only a catalytic amount of pyruvate is necessary for the enzyme conversion reaction to proceed. A typical time-course kinetic study skewed that D-alanine up to 88 mM could be produced from 100 mM of D-aspartic acid with a molar yield of 1.0.

Study on the Relationship between Skin Dryness and Amino Acids in Stratum Corneum (아미노산 동시분석을 통한 피부보습능과 각질 중 아미노산 함량과의 상관관계 연구)

  • Joo, Kyung-Mi;Han, Ji-Yeon;Son, Eui-Dong;Nam, Gae-Won;Jeong, Hye-Jin;Lim, Kyung-Min;Cho, Jun-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Natural moisturizing factors (NMFs) are hydrophilic and water-soluble components in stratum corneum of the skin. NMFs absorb water from outer environment and enhance the water-holding capacity of stratum corneum and thereby, prevent the dryness and increase flexibility and plasticity of skin. NMFs are mainly composed of amino acids and their metabolites that are produced from the degradation of filaggrin. Here we established a simultaneous quantification method for 22 amino acids in tape-stripped stratum corneum samples using UPLC-PDA. With this method, we analyzed amino acid contents from tape-stripped stratum corneum samples of forearm and forehead regions from 15 healthy volunteers. Amino acid contents of inner (or upper) region were higher than outer (or lower) region of stratum corneum. Amino acid contents of stratum corneum of forearm were higher by 1.5 fold than forehead region. Of note, total amino acid contents were significantly and inversely correlated with trans-epidermal water loss (TEWL), an index for skin barrier function. Especially, Ser, Glu, Gly, Ala and Thr were determined to positively affect skin mositurizing activities. In conclusion, we could demonstrate that amino acid contents of stratum corneum are closely linked with skin barrier and moisturizing function, providing an important and fundamental methodology for the study of amino acids in skin physiology.

Synthesis of 3-Amino-1,4-dihydropyridine Derivative via an Intramolecular Rearrangement of 1,4-Dihydropyridine-3-hydroxamate

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.319-324
    • /
    • 1991
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-3-methoxylaminocarbonyl-1,4-dihydropyridine-5-carboxylic acid methylester, 3b reacted with 2-cyanoethanol or benzylalcohol to give the corresponding cyanoethylurethane compound 6c in 40.6% yield and benzylurethane compound 6d in 32% yield. The cyanoethylurethane 6c was hydrolized in ethanolic NaOH to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-amino-5-carboxylic acid 5-methyl ester. HCl 8 in 64.8% yield. Another acid hydrolysis of benzylurethane 6d gave 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-amino-5-carboxylic acid 5-methylester. HBr 11 in 54.7% yield.

  • PDF