• 제목/요약/키워드: D-Allulose

검색결과 4건 처리시간 0.017초

미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환 (Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms)

  • 김영수;김상진;강동욱;박창수
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1545-1553
    • /
    • 2018
  • 희소당(Rare Sugars)은 국제희소당학회(International Society of Rare Sugars, ISRS)에 의해 지구상에 극히 소량 존재하는 단당류 또는 단당 유도체로서 정의되어 있으며, 희소당이 보유하고 있는 저칼로리, 항암, 항염증 및 항산화와 같은 유용한 생리활성으로 인해 현대산업분야에서 높은 주목을 받고 있는 차세대 기능성 신소재이다. 희소당은 자연계에 존재의 희소성으로 인해 희소당의 원활한 공급을 위한 희소당 생산 연구는 무엇보다도 중요한 연구로서 인식되어져 있다. 일반적으로 희소당은 화학적 방법과 미생물 유래 효소를 이용한 생물학적 방법으로 생산이 가능한데, 친환경적이며 생산공정도 안전한 생물학적 방법이 최근에 많은 주목을 받고 있다. 현재까지 희소당은 약 50종류 이상이 보고되어져 있는데 저칼로리, 항산화, 설탕 유사 감도 및 감미 특성으로부터 D-Allulose, D-Allose, 그리고 D-Tagatose가 특히 많은 주목을 받고 있는 희소당으로서 알려져 있다. 본 연구에서는 식품산업 및 의약산업을 비롯하여 다양한 산업분야에서 향 후 높은 활용성이 기대되는 D-Allulose, D-Allose, 그리고 D-Tagatose에 대한 미생물 유래 효소를 이용한 생물전환 생산에 대하여 보고를 하고자 한다.

Effects of ᴅ-allulose on body fat accumulation in rats fed severely carbohydrate-restricted diets containing beef tallow or soybean oil

  • Tatsuhiro Matsuo;Shunsuke Higaki;Reiko Inai;Susumu Mochizuki;Akihide Yoshihara;Kazuya Akimitsu
    • Journal of Nutrition and Health
    • /
    • 제57권2호
    • /
    • pp.185-195
    • /
    • 2024
  • Purpose: The carbohydrate-restricted diet has been recognized to be effective into preventing and alleviating lifestyle-related diseases, such as obesity and type 2 diabetes. The rare sugar ᴅ-allulose is a functional monosaccharide with anti-obesity effects. In the present study, we examined the effects of dietary ᴅ-allulose on body fat accumulation in rats fed severely carbohydrate-restricted diets containing high concentrations of different fats, beef tallow, or soybean oil. Methods: Male Wistar rats (n = 35, 3-week-old) were divided into 5 groups: One chow-fed control (C) group, and four carbohydrate-restricted groups, namely, beef tallow (B), beef tallow + ᴅ-allulose (BA), soybean oil (S), and soybean oil + ᴅ-allulose (SA), with free access to the diet and water for 8 weeks. The B and BA diets contained 23% beef tallow and 2% soybean oil, whereas the S and SA diets contained 25% soybean oil. Furthermore, the BA and SA diets contained 5% ᴅ-allulose. Results: The final body weight, weight gain, and food intake were significantly higher, and food efficiency was significantly lower in the control group compared to the other carbohydrate-restricted groups. Intra-abdominal adipose tissue, carcass fat, and total body fat weights were not influenced by dietary fat type or ᴅ-allulose supplementation, except for the epididymal adipose tissue weight. In contrast, carbohydrate restriction suppressed body weight gain in rats, but remarkably increased body fat accumulation. Conclusion: Under carbohydrate-restricted conditions, no anti-obesity effects of dietary ᴅ-allulose were observed, regardless of the dietary fat type. The causes of these effects are unknown. However, they may be influenced by a very low carbohydrate and high protein diet. Further research is required to elucidate the effects of ᴅ-allulose under various nutrient compositions with different fat, carbohydrate, and protein energy ratios.

Biotransformation of Fructose to Allose by a One-Pot Reaction Using Flavonifractor plautii ᴅ-Allulose 3-Epimerase and Clostridium thermocellum Ribose 5-Phosphate Isomerase

  • Lee, Tae-Eui;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.418-424
    • /
    • 2018
  • ${\text\tiny{D}}-Allose$ is a potential medical sugar because it has anticancer, antihypertensive, antiinflammatory, antioxidative, and immunosuppressant activities. Allose production from fructose as a cheap substrate was performed by a one-pot reaction using Flavonifractor plautii ${\text\tiny{D}}-allulose$ 3-epimerase (FP-DAE) and Clostridium thermocellum ribose 5-phosphate isomerase (CT-RPI). The optimal reaction conditions for allose production were pH 7.5, $60^{\circ}C$, 0.1 g/l FP-DAE, 12 g/l CT-RPI, and 600 g/l fructose in the presence of 1 mM $Co^{2+}$. Under these optimized conditions, FP-DAE and CT-RPI produced 79 g/l allose for 2 h, with a conversion yield of 13%. This is the first biotransformation of fructose to allose by a two-enzyme system. The production of allose by a one-pot reaction using FP-DAE and CT-RPI was 1.3-fold higher than that by a two-step reaction using the two enzymes.

Effect of diabetes-specific oral nutritional supplements with allulose on weight and glycemic profiles in overweight or obese type 2 diabetic patients

  • Jihye Tak;Minkyung Bok;Hyunkyung Rho;Ju Hyun Park;Yunsook Lim;Suk Chon;Hyunjung Lim
    • Nutrition Research and Practice
    • /
    • 제17권2호
    • /
    • pp.241-256
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Diabetes-specific oral nutritional supplements (ONS) have anti-hyperglycemic effects, while D-allulose exerts anti-diabetic and anti-obesity effects. In this study, we investigated the efficacy and safety of diabetes-specific ONS, including allulose, on glycemic and weight changes in overweight or obese patients with type 2 diabetes mellitus (T2DM). SUBJECTS/METHODS: A single-arm, historical-control pilot clinical trial was conducted on 26 overweight or obese patients with T2DM (age range: 30-70 yrs). The participants were administered 2 packs of diabetes-specific ONS, including allulose (200 kcal/200 mL), every morning for 8 weeks. The glycemic profiles, obesity-related parameters, and lipid profiles were assessed to evaluate the efficacy of ONS. RESULTS: After 8 weeks, fasting blood glucose (FBG) level significantly decreased from 139.00 ± 29.66 mg/dL to 126.08 ± 32.00 mg/dL (P = 0.007) and glycosylated hemoglobin (HbA1c) improved (7.23 ± 0.82% vs. 7.03 ± 0.69%, P = 0.041). Moreover, the fasting insulin (δ: -1.81 ± 3.61 μU/mL, P = 0.017) and homeostasis model assessment for insulin resistance (HOMA-IR) (δ: -0.87 ± 1.57, P = 0.009) levels decreased at 8 weeks, and body weight significantly decreased from 67.20 ± 8.29 kg to 66.43 ± 8.12 kg (P = 0.008). Body mass index (BMI) also decreased in accordance with this (from 25.59 ± 1.82 kg/m2 to 25.30 ± 1.86 kg/m2, P = 0.009), as did waist circumference (δ: -1.31 ± 2.04 cm, P = 0.003). CONCLUSIONS: The consumption of diabetes-specific ONS with allulose in overweight or obese patients with T2DM improved glycemic profiles, such as FBG, HbA1c, and HOMA-IR, and reduced body weight and BMI.