DOI QR코드

DOI QR Code

Effects of ᴅ-allulose on body fat accumulation in rats fed severely carbohydrate-restricted diets containing beef tallow or soybean oil

  • 투고 : 2023.12.15
  • 심사 : 2024.02.29
  • 발행 : 2024.04.30

초록

Purpose: The carbohydrate-restricted diet has been recognized to be effective into preventing and alleviating lifestyle-related diseases, such as obesity and type 2 diabetes. The rare sugar ᴅ-allulose is a functional monosaccharide with anti-obesity effects. In the present study, we examined the effects of dietary ᴅ-allulose on body fat accumulation in rats fed severely carbohydrate-restricted diets containing high concentrations of different fats, beef tallow, or soybean oil. Methods: Male Wistar rats (n = 35, 3-week-old) were divided into 5 groups: One chow-fed control (C) group, and four carbohydrate-restricted groups, namely, beef tallow (B), beef tallow + ᴅ-allulose (BA), soybean oil (S), and soybean oil + ᴅ-allulose (SA), with free access to the diet and water for 8 weeks. The B and BA diets contained 23% beef tallow and 2% soybean oil, whereas the S and SA diets contained 25% soybean oil. Furthermore, the BA and SA diets contained 5% ᴅ-allulose. Results: The final body weight, weight gain, and food intake were significantly higher, and food efficiency was significantly lower in the control group compared to the other carbohydrate-restricted groups. Intra-abdominal adipose tissue, carcass fat, and total body fat weights were not influenced by dietary fat type or ᴅ-allulose supplementation, except for the epididymal adipose tissue weight. In contrast, carbohydrate restriction suppressed body weight gain in rats, but remarkably increased body fat accumulation. Conclusion: Under carbohydrate-restricted conditions, no anti-obesity effects of dietary ᴅ-allulose were observed, regardless of the dietary fat type. The causes of these effects are unknown. However, they may be influenced by a very low carbohydrate and high protein diet. Further research is required to elucidate the effects of ᴅ-allulose under various nutrient compositions with different fat, carbohydrate, and protein energy ratios.

키워드

과제정보

This work was carried out with Management Expenses Grants by the Ministry of Education.

참고문헌

  1. Rakhra V, Galappaththy SL, Bulchandani S, Cabandugama PK. Obesity and the Western diet: How we got here. Mo Med 2020; 117(6): 536-538.
  2. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003; 100(6): 3077-3082.
  3. Kim JY, Nolte LA, Hansen PA, Han DH, Ferguson K, Thompson PA, et al. High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass. Am J Physiol Regul Integr Comp Physiol 2000; 279(6): R2057-R2065.
  4. Canbakan B, Tahan V, Balci H, Hatemi I, Erer B, Ozbay G, et al. Leptin in nonalcoholic fatty liver disease. Ann Hepatol 2008; 7(3): 249-254.
  5. Fried M, Hainer V, Basdevant A, Buchwald H, Deitel M, Finer N, et al. Interdisciplinary European guidelines on surgery of severe obesity. Obes Facts 2008; 1(1): 52-59.
  6. Montan PD, Sourlas A, Olivero J, Silverio D, Guzman E, Kosmas CE. Pharmacologic therapy of obesity: mechanisms of action and cardiometabolic effects. Ann Transl Med 2019; 7(16): 393.
  7. Fan R, Wang J, Du J. Association between body mass index and fatty liver risk: a dose-response analysis. Sci Rep 2018; 8(1): 15273.
  8. Lavie CJ, Morshedi-Meibodi A, Milani RV. Impact of cardiac rehabilitation on coronary risk factors, inflammation, and the metabolic syndrome in obese coronary patients. J Cardiometab Syndr 2008; 3(3): 136-140.
  9. Churuangsuk C, Lean ME, Combet E. Low and reduced carbohydrate diets: challenges and opportunities for type 2 diabetes management and prevention. Proc Nutr Soc 2020; 79(4): 498-513.
  10. Pauley M, Mays C, Bailes JR Jr, Schwartzman ML, Castle M, McCoy M, et al. Carbohydrate-restricted diet: a successful strategy for short-term management in youth with severe obesity-an observational study. Metab Syndr Relat Disord 2021; 19(5): 281-287.
  11. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295(14): 1681-1687.
  12. Blaak EE, Antoine JM, Benton D, Bjorck I, Bozzetto L, Brouns F, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 2012; 13(10): 923-984.
  13. Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 2015; 38(6): 1008-1015.
  14. American Diabetes Association. Standards of medical care in diabetes--2013. Diabetes Care 2013; 36(Suppl 1): S11-S66.
  15. Hayashi N, Yamada T, Takamine S, Iida T, Okuma K, Tokuda M. Weight reducing effect and safety evaluation of rare sugar syrup by a randomized double-blind, parallel-group study in humans. J Funct Foods 2014; 11: 152-159.
  16. Ochiai M, Misaki K, Yamada T, Iida T, Okuma K, Matsuo T. Comparison of anti-obesity effect between two types of syrup containing rare sugars in Wistar rats. J Nutr Sci Vitaminol (Tokyo) 2017; 63(3): 208-213. 
  17. Chung MY, Oh DK, Lee KW. Hypoglycemic health benefits of ᴅ-psicose. J Agric Food Chem 2012; 60(4): 863-869.
  18. Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K, Suzuki H. Dietary ᴅ-psicose, a C-3 epimer of ᴅ-fructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac J Clin Nutr 2001; 10(3): 233-237.
  19. Yamada T, Hayashi N, Iida T, Takamine S, Okuma K, Matsuo T. Dietary ᴅ-sorbose decreases serum insulin levels in growing Sprague-Dawley rats. J Nutr Sci Vitaminol (Tokyo) 2014; 60(4): 297-299.
  20. Vastenavond C, Bertelsen H, Hansen SR, Laursen R, Saunders J, Eriknauer K. Tagatose (ᴅ-tagatose). In: O'Brien-Nabors L, editor. Alternative Sweeteners. New York (NY): CRC Press; 2011. p. 197-222.
  21. Nagata Y, Kanasaki A, Tamaru S, Tanaka K. ᴅ-Psicose, an epimer of ᴅ-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem 2015; 63(12): 3168-3176.
  22. Ochiai M, Onishi K, Yamada T, Iida T, Matsuo T. ᴅ-Psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet. Int J Food Sci Nutr 2014; 65(2): 245-250.
  23. Seidelmann SB, Claggett B, Cheng S, Henglin M, Shah A, Steffen LM, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 2018; 3(9): e419-e428. 
  24. Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med 2010; 153(5): 289-298.
  25. Kelemen LE, Kushi LH, Jacobs DR Jr, Cerhan JR. Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. Am J Epidemiol 2005; 161(3): 239-249. 
  26. Lo S, Russell JC, Taylor AW. Determination of glycogen in small tissue samples. J Appl Physiol 1970; 28(2): 234-236.
  27. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509.
  28. Mickelsen O, Anderson AA. A method for preparing intact animals for carcass analyses. J Lab Clin Med 1959; 53(2): 282-290.
  29. Paik HS, Yearick ES. The influence of dietary fat and meal frequency on lipoprotein lipase and hormone-sensitive lipase in rat adipose tissue. J Nutr 1978; 108(11): 1798-1805.
  30. Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS, Balise RR, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA 2007; 297(9): 969-977. 
  31. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359(3): 229-241.
  32. Anton SD, Hida A, Heekin K, Sowalsky K, Karabetian C, Mutchie H, et al. Effects of popular diets without specific calorie targets on weight loss outcomes: systematic review of findings from clinical trials. Nutrients 2017; 9(8): 822.
  33. Higaki S, Inai R, Matsuo T. Effects of carbohydrate-restricted diet on postprandial plasma glucose levels and insulin resistance in streptozotocin-induced diabetic rats. Jpn Pharmacol Ther 2023; 51(3): 331-339.
  34. Drabinska N, Juskiewicz J, Wiczkowski W. The effect of the restrictive ketogenic diet on the body composition, haematological and biochemical parameters, oxidative stress and advanced glycation end-products in young Wistar rats with diet-induced obesity. Nutrients 2022; 14(22): 4805.
  35. Mel S, Yang X, Guo H, Gu H, Zha L, Cai J, et al. A small amount of dietary carbohydrate can promote the HFD-induced insulin resistance to a maximal level. PLoS One 2014; 9(7): e105875.
  36. Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, et al. Rare sugar ᴅ-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Ther 2015; 155: 49-59.
  37. Gou Y, Liu B, Cheng M, Yamada T, Iida T, Wang S, et al. ᴅ-Allulose ameliorates skeletal muscle insulin resistance in high-fat diet-fed rats. Molecules 2021; 26(20): 6310.
  38. Pongkan W, Jinawong K, Pratchayasakul W, Jaiwongkam T, Kerdphoo S, Tokuda M, et al. ᴅ-Allulose provides cardioprotective effect by attenuating cardiac mitochondrial dysfunction in obesity-induced insulin-resistant rats. Eur J Nutr 2021; 60(4): 2047-2061.
  39. Chung YM, Hyun Lee J, Youl Kim D, Hwang SH, Hong YH, Kim SB, et al. Dietary ᴅ-psicose reduced visceral fat mass in high-fat diet-induced obese rats. J Food Sci 2012; 77(2): H53-H58.
  40. Matsuo T, Shimomura Y, Saitoh S, Tokuyama K, Takeuchi H, Suzuki M. Sympathetic activity is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet. Metabolism 1995; 44(7): 934-939.
  41. Kim YB, Nakajima R, Matsuo T, Inoue T, Sekine T, Komuro M, et al. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet. Metabolism 1996; 45(9): 1080-1088.
  42. Manco M, Calvani M, Mingrone G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 2004; 6(6): 402-413.
  43. Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat Commun 2013; 4(1): 1528.
  44. Yagi K, Matsuo T. The study on long-term toxicity of ᴅ-psicose in rats. J Clin Biochem Nutr 2009; 45(3): 271-277.
  45. Kanasaki A, Jiang Z, Mizokami T, Shirouchi B, Iida T, Nagata Y, et al. Dietary ᴅ-allulose alters cholesterol metabolism in Golden Syrian Hamsters partly by reducing serum PCSK9 levels. J Funct Foods 2019; 60: 103429.