• Title/Summary/Keyword: Czochraski

Search Result 2, Processing Time 0.015 seconds

CHARACTERISTICS EVALUATION AND GROWTH OF $BI_4GE_3O_{12}$ SINGLE CRYSTAL BY CZOCHRALSKI METHOD

  • Cho, Yun-Ho;Kim, Yong-Kyun;Lee, Woo-Gyo;Kang, Byoung-Hwi;Kim, Jong-Kyung;Lee, Dong-Hoon;Park, Jae-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.83-86
    • /
    • 2009
  • The single crystal scintillator of bismuth germinate ($Bi_4Ge_3O_{12}$:BGO) was successfully grown by the conventional Czochraski technique. The characteristics of the grown BGO were evaluated and presented on the excitation, emission responses and energy spectra of the $\gamma$-rays from $^{241}Am$, $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{137}Cs$ and $^{54}Mn$ radio-isotopes. The energy resolution of grown BGO, $\Delta$E/E, was estimated to be 12.1% at 662 keV of $\gamma$-ray for $^{137}Cs$ nuclide. Compared to the commercial BGO crystal, we confirmed that the grown BGO has a good performance and is comparable to reference one.

Influence of the Optimized Process in Rapid Thermal Processing on Solar Cells (RTP Furnace에서 공정과정이 태양전지에 미치는 영향)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.169-172
    • /
    • 2004
  • The effect of the process parameters on the stable lifetime in rapid thermal firing(RTF) was investigated in order to optimize the process for the Cz-silicon. The process temperature was varied between $700^{\circ}C\;and\;950^{\circ}C$ while the process time was chosen 1 s and 10 s. At below $850^{\circ}C$ the stable lifetime for 10 s is higher than that for 1 s and increases with increasing by the process temperature. However, at over $850^{\circ}C$ the improved stable lifetime is not dependent on the process time and temperature. On the other hand, two high temperature processes in solar cell fabrics are combined with the optimized process and the non-optimized process. The last process determines the stable lifetime. Also, the degraded stable lifetime could be increased by processing in optimized process. The decreased lifetime can increase using the optimized oxidation process, which is a final process in solar cells. Finally, the optimized and non-optimized processes are applied solar cells.

  • PDF