• Title/Summary/Keyword: Cytosolic free Ca$^{2+}$

Search Result 39, Processing Time 0.019 seconds

Inhibitory Effects of Cordycepin (3'-Deoxyadenosine), a Component of Cordyceps militaris, on Human Platelet Aggregation Induced by Thapsigargin

  • Cho, Hyun-Jeong;Cho, Jae-Youl;Rhee, Man-Hee;Kim, Hyeong-Soo;Lee, Hyun-Sub;Park, Hwa-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1134-1138
    • /
    • 2007
  • Cordycepin (3'-deoxyadenosine) is an adenosine analog, isolated from Cordyceps militaris, and it has been used as an anticancer and anti-inflammation ingredient in traditional Chinese medicine. We investigated the effects of cordycepin (3'-deoxyadenosine) on human platelet aggregation, which was induced by thapsigargin, a tumor promoter, and determined the cytosolic free $Ca^{2+}$ levels ($[Ca^{2+}]_i$) (an aggregation-stimulating molecule) and cyclic-guanosine monophosphate (cGMP) (an aggregation-inhibiting molecule). Cordycepin inhibited thapsigargin-induced platelet aggregation in a dose-dependent manner, and it clearly reduced the levels of $[Ca^{2+}]_i$, which was increased by thapsigargin ($1\;{\mu}M$) or U46619 ($3\;{\mu}M$). Cordycepin also increased the thapsigargin-reduced cGMP levels. Accordingly, our data demonstrated that cordycepin may have a beneficial effect on platelet aggregation-mediated thrombotic diseases through the $[Ca^{2+}]_i$-regulating system such as cGMP.

$Ca^{2+}$-induced $Ca^{2+}$ Release from Internal Stores in INS-1 Rat Insulinoma Cells

  • Choi, Kyung-Jin;Cho, Dong-Su;Kim, Ju-Young;Kim, Byung-Joon;Lee, Kyung-Moo;Kim, Shin-Rye;Kim, Dong-Kwan;Kim, Se-Hoon;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • The secretion of insulin from pancreatic ${\beta}$-cells is triggered by the influx of $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channels. The resulting elevation of intracellular calcium ($[Ca^{2+}]_i$) triggers additional $Ca^{2+}$ release from internal stores. Less well understood are the mechanisms involved in $Ca^{2+}$ mobilization from internal stores after activation of $Ca^{2+}$ influx. The mobilization process is known as calcium-induced calcium release (CICR). In this study, our goal was to investigate the existence of and the role of caffeine-sensitive ryanodine receptors (RyRs) in a rat pancreatic ${\beta}$-cell line, INS-1 cells. To measure cytosolic and stored $Ca^{2+}$, respectively, cultured INS-1 cells were loaded with fura-2/AM or furaptra/AM. $[Ca^{2+}]_i$ was repetitively increased by caffeine stimulation in normal $Ca^{2+}$ buffer. However, peak $[Ca^{2+}]_i$ was only observed after the first caffeine stimulation in $Ca^{2+}$ free buffer and this increase was markedly blocked by ruthenium red, a RyR blocker. KCl-induced elevations in $[Ca^{2+}]_i$ were reduced by pretreatment with ruthenium red, as well as by depletion of internal $Ca^{2+}$ stores using cyclopiazonic acid (CPA) or caffeine. Caffeine-induced $Ca^{2+}$ mobilization ceased after the internal stores were depleted by carbamylcholine (CCh) or CPA. In permeabilized INS-1 cells,$Ca^{2+}$ release from internal stores was activated by caffeine, $Ca^{2+}$, or ryanodine. Furthermore, ruthenium red completely blocked the CICR response in perrneabilized cells. RyRs were widely distributed throughout the intracellular compartment of INS-1 cells. These results suggest that caffeine-sensitive RyRs exist and modulate the CICR response from internal stores in INS-1 pancreatic ${\beta}$-cells.

Effects of High Intracellular Calcium Concentration by Ouabain on VTG Production in the Primary Hepatocyte Cultures of Rainbow Trout, Oncorhynchus mykiss. (무지개송어(Oncorhynchus mykiss)간세포배양에 있어서 Ouabain에 의한 세포내 고Calcium 농도가 Vitellogenin 합성에 미치는 효과)

  • Yeo, In-Kyu
    • Journal of Aquaculture
    • /
    • v.11 no.2
    • /
    • pp.279-282
    • /
    • 1998
  • Effects of high concentration of intracellular calcium on estradiol-induced vitellogenin(VTG) induction were examined using ouabain in Primary hepatocyte culture in the rainbow trout Oncorhynchus mykiss. Ouabain increases cytosolic free calcium as a result of inhibition of $Na^+ - Ca^{2+}$ exchanger. Ouabain markedly reduced VTG production to the control level, despite of calcium concentrations in the incubatin medium. Therefore, ouabain would reduce VTG production not by increasing intracellular calcium bt directly by inhibiting $Na^+ - K^+$ ATPase.

  • PDF

Interaction of Calmodulin- and PKC-Dependent Contractile Pathways In Cat Lower Esophageal Sphincter (LES)

  • Kang, Hee-Yun;Lee, Tai-Sang;Lee, Yul-Pyo;Lee, Doo-Won;La, Hyun-O;Song, Hyun-Ju;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.546-551
    • /
    • 2001
  • We have previously shown that, in circular muscle cells of the lower esophageal sphincter (LES) isolated by enzymatic digestion, contraction in response to maximally effective doses of acetylcholine (ACh) or Inositol Triphosphate ($IP_3$) depends on the release of $Ca^{2+}$ from intracellular stores and activation of a $Ca6{2+}$-calmodulin (CaM)-dependent pathway. On the contrary, maintenance of LES tone, and response to low doses of ACh or $IP_3$ depend on a protein kinase C (PKC) mediated pathway. In the present investigation, we have examined requirements for $Ca6{2+}$ regulation of the interaction between CaM- and PKC-dependent pathways in LES contraction. Thapsigargin (TG) treatment for 30 min dose dependently reduced ACh-induced contraction of permeable LES cells in free $Ca6{2+}$ medium. ACh-induced contraction following the low level of reduction of $Ca6{2+}$ stores by a low dose of TG ($10^{-9}{\;}M$) was blocked by the CaM antagonist, CCS9343B but not by the PKC antagonists chelerythrine or H7, indicating that the contraction is CaM-dependent. After maximal reduction in intracellular $Ca{2+}$ from $Ca6{2+}$stores by TG ($10^{-6}{\;}M$), ACh-induced contraction was blocked by chelerythrine or H7, but not by CCS9343B, indicating that it is PKC-dependent. In normal $Ca^{2+}$medium, the contraction by ACh after TG ($10^{-9}{\;}M$) treatment was also CaM-dependent, whereas the contraction by ACh after TG ($10^{-9}{\;}M$) treatment was PKC-dependent. We examined whether PKC activation was inhibited by activated CaM. CCS 7343B Inhibited the CaM-induced contraction, but did not inhibit the DAC-induced contraction. CaM inhibited the DAC-induced contraction in the presence of CCS 9343B. This inhibition by CaM was $Ca{2+}$dependent. These data are consistent with the view that the switch from a PKC-dependent pathway to a CaM dependent pathway can occur and can be regulated by cytosolic $Ca{2+}$ in the LES.

  • PDF

Sensitivity of Rabbit Cerebral Artery to Serotonin is Increased with the Moderate Increase of Extracellular $K^+$

  • Suh, Suk-Hyo;Park, Sung-Jin;Choi, Jai-Young;Sim, Jae-Hoon;Kim, Young-Chul;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.695-703
    • /
    • 1998
  • $[K^+]_o$ can be increased under a variety of conditions including subarachnoid hemorrhage. The increase of $[K^+]_o$ in the range of $5{\sim}15$ mM may affect tensions of blood vessels and can change their sensitivity to various vasoactive substances. Therefore, it was examined in the present study whether the sensitivity of cerebral arteries to vasoactive substances can be changed with the moderate increase of $[K^+]_o$, using Mulvany-type myograph and $[Ca^{2+}]_c$ measurement. The contractions of basilar artery and branch of middle cerebral artery induced by histamine were not increased with the elevation of $[K^+]_o$ from 6 mM to 9 mM or 12 mM. On the contrary, the contractions induced by serotonin were significantly increased with the elevation of $[K^+]_o$. The contractions were also significantly increased by the treatment with nitro-L-arginine $(10^{-4}$ M for 20 minutes). In the nitro-L-arginine treated arteries, the contractions induced by serotonin were significantly increased with the elevation of $[K^+]_o$ from 6 mM to 12 mM. $K^+-induced$ relaxation was evoked with the stepwise increment of extracellular $K^+$ from 0 or 2 mM to 12 mM by 2 mM in basilar arterial rings, which were contracted by histamine. But $[K^+]_o$ elevation from 4 or 6 mM to 12 mM by the stepwise increment evoked no significant relaxation. Basal tension of basilar artery was increased with $[K^+]_o$ elevation from 6 mM to 12 mM by 2 mM steps or by the treatment with ouabain and the increase of basal tension was blocked by verapamil. The cytosolic free $Ca^{2+}$ level was not increased by the single treatment with serotonin or with the elevation of $[K^+]_o$ from 4 mM to 8 or 12 mM. In contrast to the single treatment, the $Ca^{2+}$ level was increased by the combined treatment with serotonin and the elevation of $[K^+]_o$. The increase of free $Ca^{2+}$ concentration was blocked by the treatment with verapamil. These data suggest that the sensitivity of cerebral artery to serotonin is increased with the moderate increase of $[K^+]_o$ and the increased sensitivity to serotonin is due to the increased $[Ca^{2+}]_i$ induced by extracellular $Ca^{2+}$ influx.

  • PDF

Role of Calcium in Reperfusion Damage of Ischemic Myocardium; Influence on Oxygen Radical Production

  • Park, Jong-Wan;Kim, Myung-Suk;Park, Chan-Woong
    • Toxicological Research
    • /
    • v.4 no.1
    • /
    • pp.23-35
    • /
    • 1988
  • The role of calcium in the production of oxygen radical which causes reperfusion damage of ischemic heart has been examined. The reperfusion damage was indrced in isolated Langendorff perfused rat hearts by aortic clamping for 60 min followed by reperfusion with oxygenated Krebs-Henseleit solution with or without 1.25 mM $CaCl_2.$ On reperfusion of the ischemic hearts with the calcium containing solution, the release of cytosolic enzymes (LDH and CPK) increased abruptly. These increased release of enzymes were significantly inhibited by additions of oxygen radical scavengers (SOD, 5,000 U; catalase, 12,500 U) into the reperfusion solution. In the hearts isolated from rats pretreated with allopurinol(20 mg/kg orally, 24 hr and 2 hr prior to the experiments), the levels of enzymes being released during reperfusion were significantly lower than that of the control. However, in the hearts perfused with the calcium-free but oxygenated solution, the increase in the release of cytosolic enzymes during reperfusion was neither inhibited by oxygen radical scavengers nor by allopurinol pretreatment. For providing the evidence of oxygen radical generation during the reperfusion of ischemic hearts in situ, the SOD-inhibitable reduction of exogenously administered ferricytochrome C was measured. In the hearts perfused with the calcium containing solution, the SOD-inhibitable ferricytochrome C reduction increased within the first minute of reperfusion, and was almost completely inhibited by allopurinol pretreatment. When the heart was perfused with the calcium free solution, however, the reduction of ferricytochrome C was not only less than that in the calcium containing condition, but also was not so completely inhibited by allopurinol pretreatment. By ischemia, xanthine oxidase (XOD) in the ventricular tissue was changed qualitatively, but not quantitatively. In the heart made ischemic with the calcium containing condition, the oxygen radical producing O-form of XOD increased, while the D- and D/O-form decreased. However, in the ischemic heart reperfused with the calcium free condition, the D/O-form of XOD was elevated without significant increase in O-form of the enzyme. It is suggested from these results that the calclum may play a contributing role in the genesis of reperfusion damage by promoting the conversion of xanthine oxidase from the D/O-form to the oxygen radical producing O-form in the ischemic myocardium.

  • PDF

Effects of Extracellular Calcium and Starvation on Biochemical Indices of the Rat Hepatocytes

  • Kim, Ki-Sung
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.199-203
    • /
    • 1995
  • The focus of this study was to investigate that cellular parameters and glucose uptake might be altered by extracellular calcium and starvation. Addition of 1 mM $Ca^{++}$ to hepatocytes (equalling to the free calcium concentration of blood) significantly increased intracellular $Na^+$ and decreased $Na^+$ & LDH leakage. This pertains to the hepatocytes of control rats as well as those of rats fasted for 24 and 48. hr. These effects might be come from the membrane-stabilizing effects of calcium. But calcium had no effects on cell volumes, superoxide-formation and glucose uptake. Actually hepatocytes of starved rats showed changes in several cellular parameters. Starvation increased LDH leakage, glucose uptake and the total concentration of $Na^+$ and $Na^+$ whereas it markedly decreased cell volumes. Since total tonicity remained unchanged, intracellular $Na^+$ and $Na^+$ could contribute to a higher share of total osmolarity in starvation. Starvation increased the cytoplasmic pH because $R-NH^{3+}$ions and their corresponding counterions disappeared. This increase may be related to suppress the protonization of amino groups in proteins. Starvation decreased hepatic glycogen, a major compound that affects cytosolic volume of hepatocytes. The data indicate that starvation increases the glucose transport activity. The possible molecular basis will be discussed.

  • PDF

Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

  • Dang, Van Cuong;Kim, Hyoung Kyu;Marquez, Jubert;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular $Ca^{2+}$, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with $0.5{\mu}g/ml$ BG, $100{\mu}g/ml$ peptidoglycan (PGN), or $10{\mu}M$ A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial $Ca^{2+}$ uniporter has an important regulatory role in BG-induced mast cell degranulation.

Mechanism of isoproterenol-induced relaxation of the rat uterine smooth muscle: Activation of 4-aminopyridine-sensitive K+ channels (Isoproterenol에 의한 자궁근 이완의 기전 : 4-aminopyridine-sensitive K+ 채널의 개방)

  • Kim, Ki-ha;Lee, Young-jae;Cho, Myung-haing;Lee, Mun-han;Chun, Boe-gwon;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Activation of $K^+$ channels induces relaxation of smooth muscles by reducing electrical excitability and cytosolic free $Ca^{2+}$ level. ${\beta}$-adrenergic agonist isoproterenol is known to induce relaxation of the uterine smooth muscle by membrane hyperpolarization and $K^+$ efflux. Recently it is suggested that the activity of $Ca^{2+}$-activated $K^+$ channel was increased by isoproterenol in the uterine myocytes isolated from myometrium of the pregnant rat. However, the type of $K^+$ channel mediating the relaxant effect of isopreterenol in the tissue level has not yet studied. In this work, we investigated the type of $K^+$ channels involved in the isoproterenol-induced relaxation of uterine smooth muscle by measuring the integrated insometric tension of the estrogen-treated isolated nonpregnant rat uterus. Contraction of uterine tissue was induced by oxytocin (0.2nM, 2~3 contractions/min) or high KCl(20~80mM). The result are as follows : 1. Isoproterenol($10^{-10}{\sim}10^{-4}M$) inhibited oxytocin-induced contraction of isolated rat uterus($EC_{50}=1.17{\times}10^{-10}M$). 2. Isoproterenol($10^{-10}{\sim}10^{-4}M$) effectively inhibited uterine contraction induced by low KCl(20~40mM) but little those induced by high KCl(60~80mM). 3. Relaxant effect of isoproterenol($10^{-10}{\sim}10^{-4}M$) on 0.2nM oxytocin-induced contraction was effectively reduced by 4-aminopyridine(3, 10mM) but little by TEA(10~30mM), $Ba^{2+}$($1{\sim}30{\mu}M$) and glibenclamide($100{\mu}M$). Our data suggest that the relaxant effect of isoproterenol is mediated by the $K^+$ channel(s) which can be blocked by 4-aminopyridine.

  • PDF