• Title/Summary/Keyword: Cytosolic calcium

Search Result 88, Processing Time 0.046 seconds

Effect of Purified Green Tea Catechins on Cytosolic Phospholipase $A_2$ and Arachidonic Acid Release in Human Gastrointestinal Cancer Cell Lines

  • Hong, Jung-Il;Yang, Chung-S.
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.799-804
    • /
    • 2006
  • Ingestion of green tea has been shown to decrease prostaglandin $E_2$ levels in human colorectum, suggesting that tea constituents modulate arachidonic acid metabolism. In the present study, we investigated the effects of four purified green tea catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin-3-gallate (EGCG), and (-)-epicatechin-3-gallate (ECG), on the catalytic activity of cytosolic phospholipase $A_2$ ($cPLA_2$) and release of arachidonic acid and its metabolites from intact cells. At $50\;{\mu}M$, EGCG and ECG inhibited $cPLA_2$ activity by 19 and 37%, respectively, whereas EC and EGC were less effective. The inhibitory effects of these catechins on arachidonic acid metabolism in intact cells were much more pronounced. At $10\;{\mu}M$, EGCG and ECG inhibited the release of arachidonic acid and its metabolites by 50-70% in human colon adenocarcinoma cells (HT-29) and human esophageal squamous carcinoma cells (KYSE-190 and 450). EGCG and ECG also inhibited arachidonic acid release induced by A23187, a calcium ionophore, in both HT-29 and KYSE-450 cell lines by 30-50%. The inhibitory effects of green tea catechins on $cPLA_2$ and arachidonic acid release may provide a possible mechanism for the prevention of human gastrointestinal inflammation and cancers.

Effects of Extracellular Calcium and Starvation on Biochemical Indices of the Rat Hepatocytes

  • Kim, Ki-Sung
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.199-203
    • /
    • 1995
  • The focus of this study was to investigate that cellular parameters and glucose uptake might be altered by extracellular calcium and starvation. Addition of 1 mM $Ca^{++}$ to hepatocytes (equalling to the free calcium concentration of blood) significantly increased intracellular $Na^+$ and decreased $Na^+$ & LDH leakage. This pertains to the hepatocytes of control rats as well as those of rats fasted for 24 and 48. hr. These effects might be come from the membrane-stabilizing effects of calcium. But calcium had no effects on cell volumes, superoxide-formation and glucose uptake. Actually hepatocytes of starved rats showed changes in several cellular parameters. Starvation increased LDH leakage, glucose uptake and the total concentration of $Na^+$ and $Na^+$ whereas it markedly decreased cell volumes. Since total tonicity remained unchanged, intracellular $Na^+$ and $Na^+$ could contribute to a higher share of total osmolarity in starvation. Starvation increased the cytoplasmic pH because $R-NH^{3+}$ions and their corresponding counterions disappeared. This increase may be related to suppress the protonization of amino groups in proteins. Starvation decreased hepatic glycogen, a major compound that affects cytosolic volume of hepatocytes. The data indicate that starvation increases the glucose transport activity. The possible molecular basis will be discussed.

  • PDF

α-Isocubebene modulates vascular tone by inhibiting myosin light chain phosphorylation in murine thoracic aorta

  • Ye, Byeong Hyeok;Kim, Eun Jung;Baek, Seung Eun;Choi, Young Whan;Park, So Youn;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.437-445
    • /
    • 2018
  • ${\alpha}$-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms, but the mechanism responsible for this activity has not been determined. To determine the role played by ICB on the regulation of vascular tone, we investigated the inhibitory effects of ICB on vascular contractile responses by adrenergic ${\alpha}$-receptor agonists. In addition, we investigated the role on myosin light chain (MLC) phosphorylation and cytosolic calcium concentration in vascular smooth muscle cells (VSMC). In aortic rings isolated from C57BL/6J mice, ICB significantly attenuated the contraction induced by phenylephrine (PE) and norepinephrine (NE), whereas ICB had no effects on KCl (60 mM)-induced contraction. In vasculatures precontracted with PE, ICB caused marked relaxation of aortic rings with or without endothelium, suggesting a direct effect on VSMC. In cultured rat VSMC, PE or NE increased MLC phosphorylation and increased cytosolic calcium levels. Both of these effects were significantly suppressed by ICB. In conclusion, our results showed that ICB regulated vascular tone by inhibiting MLC phosphorylation and calcium flux into VSMC, and suggest that ICB has anti-hypertensive properties and therapeutic potential for cardiovascular disorders related to vascular hypertension.

Mechanism for the Change of Cytosolic Free Calcium Ion Concentration by Irradiation of Red Light in Oat Cells

  • Han, Bong-Deok;Lee, Sang-Lyul;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.499-503
    • /
    • 1995
  • In our previous studies (Chae et al., 1990; Chae et a1., 1993), we found that a phytochrome signal was clearly connected with the change in cytosolic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in oat cells. It was determined that the $[Ca^{2+}]_i$ change occured both by mobilization out of the intracellular $Ca^{2+}$ store and by influx from the medium. The specific aim of this work is to elucidate the processes connecting $Ca^{2+}$ mobilization and influx. The cells treated with thapsigargin (increasing $[Ca^{2+}]_i$ by inhibition of the $Ca^{2+}$-ATPase in the calcium pool) in the presence of external $Ca^{2+}$ showed the same increasing pattern (sustained increasing shape) of $[Ca^{2+}]_i$ as that measured in animal cells. Red light irradiation after thapsigargin treatment did not increase $[Ca^{2+}]_i$ These results suggest that thapsigargin also acts specifically in the processes of mobilization and influx of $Ca^{2+}$ in oat cells. When the cells were treated with TEA ($K^+$ channel blocker), changes in $[Ca^{2+}]_i$ were drastically reduced in comparison with that measured in the absence of TEA. The results suggest that the change in $[Ca^{2+}]_i$ due to red light irradiation is somehow related with $K^+$ channel opening to change membrane potential. The membrane potential change due to $K^+$ influx might be the critical factor in opening a voltage-dependent calcium channel for $Ca^{2+}$ influx.

  • PDF

CBP7 Interferes with the Multicellular Development of Dictyostelium Cells by Inhibiting Chemoattractant-Mediated Cell Aggregation

  • Park, Byeonggyu;Shin, Dong-Yeop;Jeon, Taeck Joong
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2018
  • Calcium ions are involved in the regulation of diverse cellular processes. Fourteen genes encoding calcium binding proteins have been identified in Dictyostelium. CBP7, one of the 14 CBPs, is composed of 169 amino acids and contains four EF-hand motifs. Here, we investigated the roles of CBP7 in the development and cell migration of Dictyostelium cells and found that high levels of CBP7 exerted a negative effect on cells aggregation during development, possibly by inhibiting chemoattractant-directed cell migration. While cells lacking CBP7 exhibited normal development and chemotaxis similar that of wild-type cells, CBP7 overexpressing cells completely lost their chemotactic abilities to move toward increasing cAMP concentrations. This resulted in inhibition of cellular aggregation, a process required for forming multicellular organisms during development. Low levels of cytosolic free calcium were observed in CBP7 overexpressing cells, which was likely the underlying cause of their lack of chemotaxis. Our results demonstrate that CBP7 plays an important role in cell spreading and cell-substrate adhesion. cbp7 null cells showed decreased cell size and cell-substrate adhesion. The present study contributes to further understanding the role of calcium signaling in regulation of cell migration and development.

A Computational Model of Cytosolic and Mitochondrial [$Ca^{2+}$] in Paced Rat Ventricular Myocytes

  • Youm, Jae-Boum;Choi, Seong-Woo;Jang, Chang-Han;Kim, Hyoung-Kyu;Leem, Chae-Hun;Kim, Na-Ri;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.217-239
    • /
    • 2011
  • We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial $Ca^{2+}$ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [$Ca^{2+}]$ bigger in mitochondria as well as in cytosol. As L-type $Ca^{2+}$ channel has key influence on the amplitude of $Ca^{2+}$ -induced $Ca^{2+}$ release, the relation between stimulus frequency and the amplitude of $Ca^{2+}$ transients was examined under the low density (1/10 of control) of L-type $Ca^{2+}$ channel in model simulation, where the relation was reversed. In experiment, block of $Ca^{2+}$ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial $Ca^{2+}$ transients, while it failed to affect the cytosolic $Ca^{2+}$ transients. In computer simulation, the amplitude of cytosolic $Ca^{2+}$ transients was not affected by removal of $Ca^{2+}$ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [$Ca^{2+}$] in cytosol and eventually abolished the $Ca^{2+}$ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type $Ca^{2+}$ channel to total transsarcolemmal $Ca^{2+}$ flux could determine whether the cytosolic $Ca^{2+}$ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic $Ca^{2+}$ affects mitochondrial $Ca^{2+}$ in a beat-to-beat manner, however, removal of $Ca^{2+}$ influx mechanism into mitochondria does not affect the amplitude of cytosolic $Ca^{2+}$ transients.

Neurotensin Induces Catecholamine Secretion and Calcium Rise by B2 Bradykinin Receptor Activation in PC12 Cells

  • Park, Tae-Ju;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.32-32
    • /
    • 1998
  • The effect of neurotensin (NT) was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with micromolar concentrations of NT, [$^3$H]norepinephrine ([$^3$H]NE) secretion and elevation of cytosolic Ca$\^$2+/ concentration ([Ca$\^$2+/]i) were evoked in a concentration-dependent manner with an EC$\sub$50/ of 50 ${\mu}$M.(omitted)

  • PDF

Calcium Movement in Carbachol-stimulated Cell-line (Calcium수송기전에 미치는 Carbachol의 영향)

  • Lee, Jong-Hwa
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.355-363
    • /
    • 1995
  • It has been well known that the intracellular calcium concentration $([Ca^{2+}]_i)$ in living cell is very sensitive to live or to survive, but the transmembrane system of calcium ion, especially mechanism of calcium ion movement in unexcitable state has been little elucidated. Though many proposed theories for calcium ion transport have been reported, it is still unclear that how could the sustained maintenance in cytosolic calcium level be done in cell. Since one of possible mechanisms of calcium transport may be related to the acetylcholine receptor-linked calcium channel, author performed experiment to elucidate this mechanism of calcium influx related to cholinergic receptor in ml muscarinic receptor-transfected RBL-2H3 cell-line. 1) The effects of carbachol both on calcium ion influx and on the secretion of hexosaminidase were respectively observed in the manner of time-related or concentration-dependent pattern in this model. 2) The effects of several metal cations on calcium transport were shown in carbachol-induced cell-line. 3) Atropine was administered to examine the relationship between cholinergic receptor and calcium ion influx in this model. 4) PMA (Phorbol 12-myristate 13-acetate) or PTx (Pertussis toxin) was respectively administered to examine the secondary mediator which involved pathway of calcium ion movement in carbachol-induced cell-line. The results of this experiments were as follows; 1) Carbachol significantly stimulated both the calcium influx and the secretion of hexosaminidase in the manner of the concentration-dependent pattern. 2) Atropine potently blocked the effects of carbachol in concentration-response manner. 3) Administered metal cations inhibited the calcium influx in carbachol-stimulated this model to the concentration-related pattern. 4) PMA did not inhibit carbachol-induced secretion of hexosaminidase, but blocked the calcium influx in this cell-line. 5) The suppression of carbachol-induced hexosaminidase secretion was shown in PTx-treated cell -line.

  • PDF

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF