• Title/Summary/Keyword: Cytochrome P450 3A4 (CYP3A4)

Search Result 158, Processing Time 0.019 seconds

Effect of the single nucleotide polymorphism from cytochrome P450 (CYP2A6) gene to fatty acid composition traits in Korean native pig crossed progeny (돼지 Cytochrome P450 (CYP2A6) 유전자 내의 단일염기변이 발굴 및 고기내 불포화 지방산 조성에 미치는 영향)

  • Roh, Jung-Gun;Kim, Sang-Wook;Kim, Kwan-Suk
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.689-693
    • /
    • 2011
  • The purpose of this study was to investigate the Cytochrome P450 (CYP2A6) gene as a candidate gene for the traits related with meat fatty acid composition traits in pigs. Porcine CYP2A6 polymorphisms were detected and PCR-RFLP was performed for genotyping of Korean native pig (n=14), Landrace (n=3), Duroc (n=3), Berkshire (n=3), Yorkshire (n=8) and F2 population composed of 202 individuals from an intercross between Korean Native pig and Yorkshire. PCR primer set amplified a 612 bp fragment of CYP2A6 and digestion of the PCR products was performed with the restriction enzymes SchI. The CYP2A6 SchI polymorphism was only found in the KNP breed. The genotype frequencies of TT, TC and CC genotypes were 0.36, 0.56 and 0.08 in the KNP respectively and the other pig breeds were fixed with CC genotype (Duroc, Landrace, Berkshire and Yorkshire). Statistical association between genotypes and fatty acid composition traits were tested in the Korean native pig and Yorkshire crossed F2 pigs. The CYP2A6 SchI polymorphism was associated with only fatty acid composition C20:3n3 level (cis11,14,17-Eicosatrienoic acid, p=0.0252). The 'T' allele was associated with lower C20:3n3 level. Further study is required to validate the genotypic association and biological consequence of the CYP2A6 gene polymorphism in pigs.

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Effect of TSHAC on Human Cytochrome P450 Activity, and Transport Mediated by P-Glycoprotein

  • Im, Yelim;Kim, Yang-Weon;Song, Im-Sook;Joo, Jeongmin;Shin, Jung-Hoon;Wu, Zhexue;Lee, Hye Suk;Park, Ki Hun;Liu, Kwang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1659-1664
    • /
    • 2012
  • TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] is a promising antitumorigenic chalcone compound, especially against TM4SF5 (four-transmembrane L6 family member 5)-mediated hepatocarcinoma. We evaluated the potential of TSAHC to inhibit the catalytic activities of nine cytochrome P450 isoforms and of P-glycoprotein (P-gp). The abilities of TSAHC to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The P-gp inhibitory effect of TSAHC was assessed by [$^3H$]digoxin accumulation in the LLCPK1-MDR1 cell system. TSAHC strongly inhibited CYP2C8, CYP2C9, and CYP2C19 isoform activities with $K_i$ values of 0.81, 0.076, and $3.45{\mu}M$, respectively. It also enhanced digoxin accumulation in a dose-dependent manner in the LLCPK1-MDR1 cells. These findings indicate that TSAHC has the potential to inhibit CYP2C isoforms and P-gp activities in vitro. TSAHC might be used as a nonspecific inhibitor of CYP2C isoforms based on its negligible inhibitory effect on other P450 isoforms such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, and CYP3A.

Effects of Mollugin on Hepatic Cytochrome P450 in Male ICR Mice as Determined by Liquid Chromatography/Tandem Mass Spectrometry

  • Song, Min;Hong, Miri;Choi, Hyun Gyu;Jahng, Yurngdong;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.104-107
    • /
    • 2012
  • Mollugin isolated from Rubia cordifolia is known to have anti-inflammatory, anti-cancer, and anti-viral activities. In the present study, a cocktail probe assay and LC-MS/MS were used to investigate the modulating effect of mollugin on cytochrome P450 (CYP) enzymes in male ICR mice. After mollugin was orally administrated to mice at the 20, 40, or 80 mg/kg for 3 days, the activities of CYP in hepatic S-9 fractions were investigated. Unlike the selective inhibitory effect of mollugin on CYP1A2-catalyzed phenacetin O-deethylation in vitro, mollugin only significantly inhibited the activity of CYP2E1-catalyzed chlorzoxazone 6-hydroxylase in vivo. The activities of other CYPs were only slightly altered by mollugin. The results of this study suggest that mollugin might cause herb-drug interactions via the selective inhibition of CYP2E1 in vivo.

Influences of Capsaicin on the Activities of Cytochrome P45O of Liver Cell (간세포내의 Cytochrome P450 활성에 미치는 Capsaicin의 영향)

  • 김성오
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.16-28
    • /
    • 1995
  • Influences of capsaicin on the activities of cytochrome P45O of liver cell were studied in rats. Rats were provided food and water ad libitum and capsaicin and methylcellulose were gavaged for 6 days. Body weight gain and liver weight/body weight ratio, microsomal protein content and serum HDL- cholesterol content, the activity of cytochrome P450 and erythromycin demethylase, the activities of ethoxyresorufin and pentoxyresorufin O- dealkylase were determined. Capsaicin increased body weight gain but showed no significant changes on liver weight as compared with control group. Capsaicin increased the microsomal protein significantly but decreased the serum HDL- cholesterol. Capsaicin decreased the microsomal cytochrome P4SO significantly and did not show any influences on erythromycin demethylase ( cytochrome P45O III A ). Capsaicin increased the activity of pentoxyresorufin O- dealkylase ( cytochrome P45O II B) and decreased the activity of ethoxyresorufin O-dealkylase ( cytochrome P45O I A). It might be concluded that capsaicin reduced the microsomal cytochrome P45O and induced the CYP III and inhibited the CYP I A. It also might be concluded that capsaicin had no influence on CYP III A and decreased serum HDL- cholesterol. In these results capsaicin can not be used as an anti- atherosclerotic agent by increasing the CYP III A and HDL- cholesterol but it is considered that the more precise study on these theme is necessary.

  • PDF

In vitro Metabolism of Pentoxifylline Metabolite M-l in Human Liver Microsomes (인체 간 microsome에서 pentoxifylline 대사체 M-1의 시험관내 대사)

  • 신혜순
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.834-842
    • /
    • 1999
  • The metabolism and pharmacokinetics of M-l, which is metabolite of pentoxifylline, have been studied in human liver microsomes. Biphasic kinetics was observed from the Eadie-Hofstee plot for the formation of both metabolites of M-l. For the kinetics of pentoxifylline, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 1,648 and 5,622 nmol/min/mg protein, and the estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.180 and 4.829 mM, respectively. For M-3, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 0.062 and 0.491 nmol/min/mg protein, and estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.025 and 1.216 mM. The formations of pentoxifylline and M-3 from M-1 were indentified by using several selective inhibitors of cytochrome P450 isoformes at 0.05-5 mM concentration of M-1 in human liver microsomes. For the analysis of low (0.05 mM) concentration of M-1, where the affinity was expected as low, indicated that CYPlA2 and CYP3A4 were major P450 isoforms responsible for pentoxifylline and M-3 formation. CYP3A4 and CYP2A6 appeared to be P450 isoforms responsible for M-3 formation at high (5 mM) concentration of M-1.

  • PDF

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

Biphasic Effects of the Flavonoids Quercetin and Naringenin on the Metabolic Activation of 2-Amino-3,5-dimethylimidazo[4,5-F]quinoline by Salmonella Typhimurium TA1538 Coexpressing Human Cytochrome P450 1A2, NADPH-Cytochrome P450 Reductase, and Cytochrome $b_5$

  • Kang, Il-Hyun;kim, Hyun-Jung;Oh, Hyeyoung;Park, Young-In;Dong, Mi-Sook
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.3
    • /
    • pp.94-98
    • /
    • 2003
  • Quercetin and naringenin are representative flavonoids that not only exert anti estrogenic, cholesterol-lowering and antioxidant activities but also can modulate the metabolism of many xenobiotics. The activity of the specific form(s) of CYP450 is likely to be a major determinant of susceptibility to chemically induced carcinogenesis between which varies among between individuals due to different dietary habits as well as genetic characteristics. People consume cooked meat or fish together with various vegetables containing substantial amounts of quercetin and naringenin that can modify the enzyme activity of CYP1A2 to stimulate or to inhibit the mutagenic activities of HCAs. Heterocyclic amines (HCAs) produced by cooking meat products at high temperatures are promutagens that are activated by cytochrome P450 (CYP) lA2. Using a newly developed Salmonella typhimurium TA1538/1A2bc-b5 strain, we tested the effect of quercetin and naringenin on the mutagenicity of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). TA1538/1A2bc-b5 bears two plasmids, one expressing human CYP1A2 and NADPH-P450 reductase (NPR), and the other plasmid which expresses human cytochrome b5 (cyp b5). TA1538/1A2bc-b5 cells showed high activities of 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) associated with CYP1A2 and are very sensitive to mutagenesis induced by several HCAs. MeIQ was found to be the strongest mutagen among the HCAs tested in this system. Mutagenicity of MeIQ was enhanced 50 and 42% by quercetin at 0.1 and 1 mM, respectively, but suppressed 82% and 96% at 50 mM and 100 mM. Naringenin also increased the MeIQ-induced mutation about 37% and 22% at 0.1 and 1 mM, but suppressed it 32% and 63% at 50 mM and 100 mM concentrations, respectively, in TA 1538/1A2bc-b5 cells. Thus, they stimulated the MeIQ induced mutation at low concentrations, but strongly suppressed it at high concentrations. This biphasic effect of flavonoids was due to the stimulation or the inhibition of CYP1A2 activity in a dose-dependent manner judging by the activities of EROD or MROD in the Salmonella cells. Collectively, it is likely that the biphasic effects of quercetin and naringenin on the MeIQ-induced mutagenesis in S. typhimurium TA1538/CYP1A2bc-b5 were due to their differential modification of the CYP1A2 activity in these cells.

  • PDF

Cloning of Elicitor-Inducible 5-epi-Aristolochene Hydroxylase in Tobacco Cell Suspension Culture (담배 현탁배양 세포의 Elicitor 유도성 5-epi-Aristolochene Hydroxylase 유전자의 클로닝)

  • Soon Tae Kwon;In-Jung Lee;Joseph Chappell
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.604-613
    • /
    • 1998
  • The last enzyme of the sesquiterpen phytoalexin capsidiol synthesis in tobacco cell, 5-epi-aristolochene hydro-xylase which convert 5-epi-aristolochene (EAS) to capsidiol, was cloned by a reverse transcription polymerase chain reaction strategy and cDNA library screening. Cloned CYP-B3 contained high probability amino acid matches to known plant cytochrome P450 sequences and open reading frame with the conserved FxxGxRxCxG heme-binding region. Transcripts of CYP-B3 were not detected in control cells, but induced in elicitor-treated cells. Furthermore, CYP-B3 transcripts were induced by fungal extracts and cellulase but not by other stimuli(chilling, heat shock and 2,4-D). Induction of CYP-B3 transcripts by elicitor treatment was not affected by ancymidol and ketoconazole treat-ments suggesting that an inhibition of hydroxylase activity by Cyt P450 inhibitors resulting from post translational processing event.

  • PDF

In vitro inhibitory effects of Yangguksanhwa-tang and Taeumjowi-tang on CYP450 isozymes (양격산화탕과 태음조위탕 추출물의 in vitro CYP450 효소 활성 억제 효과)

  • Ha, Hye-Kyung;Jin, Seong-Eun;Shin, Hyeun-Kyoo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • Objective : Herb-drug interactions have become an important issue because of the consumption of herbal remedies has increased in the world. Yangguksanhaw-tang (Liang ge san huo-tang) and Taeumjowi-tang (Tai yin tiao wei-tang) are typical herbal formulas on Sasang constitution medicine (four-constitution medicine). This study was aimed at evaluating the effects of Yangguksanhaw-tang and Taeumjowi-tang on drug metabolizing enzymes, cytochrome P450 (CYP450) isozymes. Methods : Vivid$^{(R)}$ CYP450 Screening Kits were used to measure of CYP3A4, CYP2C19, CYP2D6 and CYP2E1 activities. This method is based on the use of fluorescent CYP450 substrates that are efficiently metabolized by specific CYP450 isozymes to yield a product with altered fluorescent properties. The percent inhibitions of CYP450s by herbal formulas were calculated. Results : Yangguksanhaw-tang inhibited CYP2C19 and CYP2E1 activities higher than that other CYP450 isozymes. The $IC_{50}$ values of CYP2C19 and CYP2E1 were 159.83 ${\mu}g/mL$ and 261.40 ${\mu}g/mL$, respectively. The CYP2E1 activity was inhibited ($IC_{50}=215.17{\mu}g/mL$) higher than that other CYP450 isozymes by Taeumjowi-tang. Conclusions : These results suggest that Yangguksanhaw-tang may inhibit the metabolism of co-administered drugs whose primary route of metabolism is via CYP2C19 or CYP2E1. Taeumjowi-tang could inhibit the metabolism of co-administered drugs, which are substrates for CYP2E1. Therefore, co-administration of the herbal formulas and other conventional drugs should be undertaken with care.