• 제목/요약/키워드: Cytochrome P450 2C8 (CYP2C8)

검색결과 46건 처리시간 0.028초

건강한 한국인 자원자에서 theophylline 약동학에 미치는 Cimetidine의 효과 (Effect of Cimetidine on Pharmacokinetics of Theophylline in Healthy Korean Volunteers)

  • 권준택;채석;손동렬;염윤기;김형기
    • 한국임상약학회지
    • /
    • 제17권1호
    • /
    • pp.13-18
    • /
    • 2007
  • Theophylline은 methylxanthine계열 기관지확장제중 가장 강력하며 기관지 천식이나 만성 폐쇄성 호흡기 질환환자에서 사용된다. Theophylline은 치료지수가 5-20 mg/L로 매우 좁은 치료지수를 갖는 약물이다. Cimetidine과 theophylline은 주로 간에 존재하는 cytochrome P450 (CYP) 효소에 의해 대사되며 theophylline은 유전적 다형성이 보고된 바있는 CYP1A2에 의해 대부분 대사된다. 본 연구는 theophylline의 약동학에 미치는 cimetidine의 영향을 평가하고 CYP1A2 유전적 다형성의 영향유무를 검증하였다. 8명의 건강한 비흡연자인 한국인 자원자를 모집하여 공개, 2기 교차시험을 실시하였다. 8명의 자원자에게 1기 시험의 첫날 100 mg의 aminophylline을 경구로 단회 투여하였으며 약물투여 후 36시간까지 채혈하여 혈장을 보관하였다. 공혈장 채취를 위해 채혈한 혈액중 일부를 가지고 유전자형 검색을 실시하였다. 1주일의 휴약기를 거친 후 2기 시험을 진행하였다. 2기 시험의 첫날 같은 용량의 aminophylline과 200 mg의 cimetidine을 같이 경구로 단회 투여하였다. 혈장 중 theophylline농도는 고성능 액체 크로마토그래피를 이용하여 측정하였으며 1기와 2기 시험에서 각종 약동학적 경수를 컴퓨터를 이용하여 계산하였다. 8명의 자원자에서 PCR-RFLP를 이용하여 유전자형 검색을 실시하였다. 8명(남자 4명, 여자 4명)의 자원자에서 약물과 관련한 약물이상 반응은 시험기간동안 발생하지 않았다. 약동학적 분석에서 theophylline의 혈장 농도 곡선하 면적(AUC)와 최고혈중농도($C_{max}$)가 cimetidine과 theophylline을 동시에 투여하였을 때 통계적으로 유의하게 증가하였으며 경구 청소율(CL/F)은 유의하게 감소하였다. 8명의 CYP1A2 유전자형 검색에서 돌연변이 유전자형은 발견하지 못하였으며 CYP1A2*1C 유전자형 검색에서 모두 (G/G) homozygote였으며 CYP1A2*1F 유전자형 검색에서는 5명이 (A/A) homozygote이고 3명이 (A/C) heterozygote였다. 따라서 theophylline대사에 CYP1A2유전자형에 따른 대사능의 차이는 관찰할 수 없었다. 이상의 결과를 요약하면 theophylline의 약동학은 cimetidine에 의해 유의한 차이를 보였으며 CYP1A2유전자형에 따른 영향은 관찰할 수 없었다. CYP1A2유전자형에 따른 생체내 대사능을 관찰하는 실험이 향후 이루어 져야 할 것으로 사료된다.

  • PDF

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • 대한의생명과학회지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.

Influencing Factors for Cure of Clonorchiasis by Praziquantel Therapy: Infection Burden and CYP3A5 Gene Polymorphism

  • Kim, Chung-Hyeon;Lee, Jeong-Keun;Chung, Byung-Suk;Li, Shun-Yu;Choi, Min-Ho;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • 제49권1호
    • /
    • pp.45-49
    • /
    • 2011
  • Chemotherapy of clonorchiasis with praziquantel (PZQ) is effective but about 15% of treated cases have been reported uncured. The present study investigated correlation of single nucleotide polymorphisms (SNPs) of the cytochrome P450 gene, CYP3A5 and cure of clonorchiasis. A total of 346 egg passing residents were subjected and treated by 3 doses of 25 mg/kg PZQ. Reexamination recognized 33 (9.5%) uncured and 313 cured. Numbers of eggs per gram of feces (EPGs) before treatment were significantly lower in the cured group than in the uncured group ($2,011.2{\pm}3,600.0$ vs $4,998.5{\pm}7,012.0$, P<0.001). DNAs of the subjects were screened for SNPs at 7 locations of CYP3A5 using PCR. In the uncured group, the SNP frequencies at g.-20555G > A and g.27526C > T of CYP3A5 were 15.2% and 9.1% while those were 3.8% and 1.0%, respectively, in the cured group. The cure rate was Significantly lower in the cases with SNP at g.27526C > T and EPGs ${\geq}$ 1,000. In conclusion, EPGs and SNPs of CYP3A5 are factors which influence cure of clonorchiasis by PZQ therapy. It is strongly suggested to recommend 2-day medication for individuals with high EPGs ${\geq}$ 1,000.

Heterologous Expression of Rhizopus Oryzae CYP509C12 Gene in Rhizopus Nigricans Enhances Reactive Oxygen Species Production and 11α-Hydroxylation Rate of 16α, 17-Epoxyprogesterone

  • Shen, Chaohui;Gao, Xiyang;Li, Tao;Zhang, Jun;Gao, Yuqian;Qiu, Liyou;Zhang, Guang
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.301-307
    • /
    • 2019
  • The $11{\alpha}$-hydroxylation of $16{\alpha}$, 17-epoxyprogesterone (EP) catalyzed by Rhizopus nigricans is crucial for the steroid industry. However, lower conversion rate of the biohydroxylation restricts its potential industrial application. The $11{\alpha}$-steroid hydroxylase CYP509C12 from R. oryzae were reported to play a crucial role in the $11{\alpha}$-hydroxylation in recombinant fission yeast. In the present study, the CYP509C12 of R. oryzae (RoCYP) was introduced into R. nigricans using the liposome-mediated mycelial transformation. Heterologous expression of RoCYP resulted in increased fungal growth and improved intracellular reactive oxygen species content in R. nigricans. The $H_2O_2$ levels in RoCYP transformants were approximately 2-folder that of the R. nigricans wild type (RnWT) strain, with the superoxide dismutase activities increased approximately 45% and catalase activities decreased approximately 68%. Furthermore, the $11{\alpha}$-hydroxylation rates of EP in RoCYP transformants (C4, C6 and C9) were 39.7%, 38.3% and 38.7%, which were 12.1%, 8.2% and 9.4% higher than the rate of the RnWT strain, respectively. This paper investigated the effect of heterologous expression of RoCYP in R. nigricans, providing an effective genetic method to construct the engineered strains for steroid industry.

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

AtCYP78A7 과발현 환경스트레스 내성 형질전환 벼의 단백질 진단 키트 개발 (Development of a Kit for Diagnosing AtCYP78A7 Protein in Abiotic-tolerant Transgenic Rice Overexpressing AtCYP78A7)

  • 남경희;박정호;백인순;김호방;김창기
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.835-840
    • /
    • 2018
  • 본 연구는 시토크롬 P450 단백질을 암호화하는 애기장대 유래의 AtCYP78A7을 과발현하는 형질전환 식물체로부터 AtCYP78A7 단백질을 특이적으로 인식하는 단일큰론 항체의 제조와 그 항체를 AtCYP78A7 단백질과 접촉시켜 항원-항체 복합체 형성을 검출함으로써 AtCYP78A7 단백질을 효소면역학적(ELISA) 방법으로 검출하는 진단 키트를 개발하기 위하여 수행하였다. 재조합한 GST-AtCYP78A7 단백질을 항원으로 사용하여 단일클론 항체를 분비하는 융합세포주를 제조한 후 비오틴화 및 페어링 테스트를 통해 포획항체와 검출항체를 선정하였으며, GST-AtCYP78A7 정제 단백질을 기준으로 일품벼, 화영벼, AtCYP78A7 과발현 벼(10B-5, 18A-4)의 용해물을 검출항원으로 사용하여 product test를 진행하였다. 그 결과 AtCYP78A7 단백질에 특이적으로 결합하는 4개의 단클론 항체(mAb 6A7, mAb 4C2, mAb 11H6, mAb 7E8)를 생산하였고, 포획항체 mAb 4C2와 검출항체 mAb 7E8-biotin의 조합으로 ELISA 키트를 개발하였다. 개발된 ELISA 키트를 이용한 벼 시료의 분석 결과 AtCYP78A7 과발현 벼는 전체 단백질 대비 AtCYP78A7 단백질의 비율이 0.1% 이상인 양성으로, 일품벼와 화영벼는 0.1% 미만인 음성으로 나타나 키트를 이용한 AtCYP78A7 단백질의 검출이 가능하였으며, 따라서 본 키트는 향후 AtCYP78A7를 과발현하는 형질전환 작물을 대상으로 하는 환경 모니터링 또는 인체 위해성 평가에 유용하게 활용될 수 있을 것으로 사료된다.

Investigation of Herb-Drug Interactions between Korean Red Ginseng Extract and five CYP Substrates by LC-MS/MS

  • Jo, Jung Jae;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제8권4호
    • /
    • pp.98-104
    • /
    • 2017
  • Ginseng (Panax ginseng Meyer) is a well-known health functional food used as a traditional herbal drug in Asian countries owing to its diverse pharmacological effects. Herb-drug interactions may cause unexpected side effects of co-administered drugs by the alteration of pharmacokinetics through effects on cytochrome P450 activity. In this study, we investigated the herb-drug interactions between Korean red ginseng extract (KRG) and five CYP-specific probes in mice. The pharmacokinetics of KRG extract induced-drug interactions were studied by cassette dosing of five CYP substrates for CYP1A, 2B, 2C, 2D, and 3A and the LC-MS/MS analysis of the blood concentration of metabolites of each of the five probes. The linearity, precision, and accuracy of the quantification method of the five metabolites were successfully confirmed. The plasma concentrations of five metabolites after co-administration of different doses of the KRG extract (0, 0.5, 1, and 2 g/kg) were quantified by LC-MS/MS and dose-dependent pharmacokinetic parameters were determined. The pharmacokinetic parameters of the five metabolites were not significantly altered by the dose of the KRG extract. In conclusion, the single co-administration of KRG extract up to 2 g/kg in vivo did not cause any significant herb-drug interactions linked to the modulation of CYP activity.

The Promotive Effects of Antioxidative Apigenin on the Bioavailability of Paclitaxel for Oral Delivery in Rats

  • Choi, Sang-Joon;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.469-476
    • /
    • 2010
  • This study was to investigate the effect of apigenin on the bioavailability of paclitaxel after oral and intravenous administration in rats. The effect of apigenin on P-glycoprotein (P-gp), cytochrome P450 (CYP)3A4 activity was evaluated. The pharmacokinetic parameters of paclitaxel were determined in rats after oral (40 mg/kg) or intravenous (5 mg/kg) administration of paclitaxel with apigenin (0.4, 2 and 8 mg/kg) to rats. Apigenin inhibited CYP3A4 activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly inhibited P-gp activity. Compared to the control group, apigenin significantly increased the area under the plasma concentration-time curve (AUC, p<0.05 by 2 mg/kg, 59.0% higher; p<0.01 by 8 mg/kg, 87% higher) of oral paclitaxel. Apigenin also significantly (p<0.05 by 2 mg/kg, 37.2% higher; p<0.01 by 8 mg/kg, 59.3% higher) increased the peak plasma concentration ($C_{max}$) of oral paclitaxel. Apigenin significantly increased the terminal half-life ($t_{1/2}$, p<0.05 by 8 mg/kg, 34.5%) of oral paclitaxel. Consequently, the absolute bioavailability (A.B.) of paclitaxel was significantly (p<0.05 by 2 mg/kg, p<0.01 by 8 mg/kg) increased by apigenin compared to that in the control group, and the relative bioavailability (R.B.) of oral paclitaxel was increased by 1.14- to 1.87-fold. The pharmacokinetics of intravenous paclitaxel were not affected by the concurrent use of apigenin in contrast to the oral administration of paclitaxel. Accordingly, the enhanced oral bioavailability by apigenin may be mainly due to increased intestinal absorption caused via P-gp inhibition by apigenin rather than to reduced renal and hepatic elimination of paclitaxel. The increase in the oral bioavailability might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced first-pass metabolism of paclitaxel via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by apigenin. It appears that the development of oral paclitaxel preparations as a combination therapy is possible, which will be more convenient than the i.v. dosage form.

Effects of Morin on the Bioavailability of Doxorubicin for Oral Delivery in Rats

  • Son, Hong-Mook;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권4호
    • /
    • pp.243-248
    • /
    • 2009
  • The purpose of this study was to investigate the effects of morin, an antioxidant, on the bioavailability of doxorubicin (DOX) in rats. Thus, DOX was administered intravenously (10 mg/kg) or orally (50 mg/kg) with or without oral morin (0.5, 3 and 10 mg/kg). In the presence of morin, the total area under the plasma concentration-time curve (AUC) of DOX was significantly greater than that of the control. In the presence of 3 and 10 mg/kg of morin, the peak concentration $C_{MAX}$) was significantly higher than that of the control. Consequently, the absolute bioavailability (AB) of DOX in the presence of morin was 3.7-8.3%, which was significantly enhanced compared with those of the control group (2.7%). The relative bioavailability (RB) of DOX was 1.36 to 3.02 times higher than those of the control group. Compared to the intravenous control, the presence of morin increased the AUC of DOX, but was not significantly affected. The enhanced bioavailability of oral DOX by oral morin may be due to the inhibition of both P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A in the intestine and/or liver by morin. This result may suggest that the development of oral DOX combination with morin is feasible, which is more convenient than the i.v. dosage forms. The present study raised the awareness about the potential drug interactions by concomitant use of DOX with morin.

Effects of Ticlopidine on the Pharmacokinetics of Diltiazem and Its Main Metabolite, Desacetyldiltiazem, in Rats

  • Choi, Jun-Shik;Yang, Joon-Seung;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.255-260
    • /
    • 2011
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined in rats after oral administration of diltiazem (15 $mg{\cdot}kg^{-1}$) with ticlopidine (3 or 9 $mg{\cdot}kg^{-1}$). The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activities were also evaluated. Ticlopidine inhibited CYP3A4 enzyme activity in a concentrationdependent manner with a 50% inhibition concentration ($IC_{50}$) of 35 ${\mu}M$. In addition, ticlopidine did not significantly enhance the cellular accumulation of rhodamine-123 in NCI/ADR-RES cells overexpressing P-gp. Compared with the control (given diltiazem alone), ticlopidine significantly altered the pharmacokinetic parameters of diltiazem. The peak concentration ($C_{max}$) and the area under the plasma concentration-time curve (AUC) of diltiazem were significantly (9 $mg{\cdot}kg^{-1}$, p<0.05) increased in the presence of ticlopidine. The AUC of diltiazem was increased by 1.44-fold in rats in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$). Consequently, the absolute bioavailability (A.B.) of diltiazem in the presence of ticlopidine (9.3-11.5%) was signifi cantly higher (9 $mg{\cdot}kg^{-1}$, p<0.05) than that in the control group (8.0%). Although ticlopidine significantly (p<0.05) increased the AUC of desacetyldiltiazem, the metabolite-parent AUC ratio (M.R.) in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$) was significantly decreased compared to that in the control group, implying that ticlopidine could effectively inhibit the metabolism of diltiazem. In conclusion, the concomitant use of ticlopidine significantly enhanced the oral bioavailability of diltiazem in rats by inhibiting CYP3A4-mediated metabolism in the intestine and/or liver rather than by inhibiting intestinal P-gp activity or renal elimination of diltiazem.