• 제목/요약/키워드: Cytochrome P450 2C19 (CYP2C19)

검색결과 38건 처리시간 0.021초

약물유전체학과 정신분열병 (Pharmacogenomics and Schizophrenia)

  • 이규영;정인원
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF

Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

  • Hwang, Eun-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.268-273
    • /
    • 2014
  • The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with $0.1{\sim}1.0{\mu}M$ BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; $0.5{\mu}M$ and $10{\mu}M$ NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with $0.1{\sim}2.0{\mu}M$ BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with $1{\mu}M$ and $2{\mu}M$ BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with $1{\mu}M$ and $2{\mu}M$ NAC-BITC caused 1.6-and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in $0.1{\sim}2{\mu}M$ BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in $0.1{\mu}M$ NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., $1{\sim}2{\mu}M$) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.

Xylene에 의한 CYP2B1/2의 유도와 대사에 있어서 toluene의 영향 (The effects of toluene on its metabolism and induction of cytochrome P-450(CYP)2B1/2 by xylene)

  • 김기웅;허경화
    • 한국산업보건학회지
    • /
    • 제19권1호
    • /
    • pp.73-79
    • /
    • 2009
  • This study was undertaken to investigate the effects of single and combined exposure of toluene (T) and xylene (X) on the cytochrome-450(CYP)-mediated metabolizing capacity, induction of CYP isozymes and the excretion of their metabolites in urine. Animal were adults male Sprague-Dawley (SD) rats and divided into 4 groups such as control, T (treated with 63.7 mg/body kg), X (treated with 65.9 mg/body kg) and TX(T=X). Organic solvents was administrated by intraperitoneal injection for 3 days. The contents of protein and CYP in liver microsomes of control group were $16.48{\pm}0.56 mg/m{\ell}$ and $0.744{\pm}0.025$ nmol/mg protein, respectively, and they contents were significantly lower than in derived from treated groups (p<0.01). The activities of PROD and ${\rho}NPH$ were significantly higher in single treated groups than in control and combined group (TX). When Western immunoblotting were carried out with two monoclonal antibodies (MAb 1-98-1 and MAb 2-66-3) which were specific against CYP2B1/2 and CYP2E1, respectively, a strong signal corresponding to CYP2B1/2 was observed in microsomes obtained from rats treated with X and TX. The color density against CYP2E1 was slightly increased in T and TX groups compared with C and X groups. The amounts of urinary hippuric acid in T single treated group was $3.29{\pm}1.97$ g/g creatinine and TX combined group was $2.91{\pm}1.76$ g/g creatinine, but was not significant. However, amount of urinary methy hippuric acid in X single treated group ($1.62{\pm}0.72$ g/g creatinine) was significantly higher than TX combined group ($0.93{\pm} 0.63$ g/g creatinine)(p<0.01). These results suggested that CYP2E1 isozyme might be responsible for the metabolism of T, and CYP2B1/2 isozyme is for X. And also, difference of metabolites level between single and combined group may be speculated that the intermediates of T and X interacted each other in the process of their metabolite formation reaction.

Effects of Ticlopidine on the Pharmacokinetics of Diltiazem and Its Main Metabolite, Desacetyldiltiazem, in Rats

  • Choi, Jun-Shik;Yang, Joon-Seung;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.255-260
    • /
    • 2011
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined in rats after oral administration of diltiazem (15 $mg{\cdot}kg^{-1}$) with ticlopidine (3 or 9 $mg{\cdot}kg^{-1}$). The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activities were also evaluated. Ticlopidine inhibited CYP3A4 enzyme activity in a concentrationdependent manner with a 50% inhibition concentration ($IC_{50}$) of 35 ${\mu}M$. In addition, ticlopidine did not significantly enhance the cellular accumulation of rhodamine-123 in NCI/ADR-RES cells overexpressing P-gp. Compared with the control (given diltiazem alone), ticlopidine significantly altered the pharmacokinetic parameters of diltiazem. The peak concentration ($C_{max}$) and the area under the plasma concentration-time curve (AUC) of diltiazem were significantly (9 $mg{\cdot}kg^{-1}$, p<0.05) increased in the presence of ticlopidine. The AUC of diltiazem was increased by 1.44-fold in rats in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$). Consequently, the absolute bioavailability (A.B.) of diltiazem in the presence of ticlopidine (9.3-11.5%) was signifi cantly higher (9 $mg{\cdot}kg^{-1}$, p<0.05) than that in the control group (8.0%). Although ticlopidine significantly (p<0.05) increased the AUC of desacetyldiltiazem, the metabolite-parent AUC ratio (M.R.) in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$) was significantly decreased compared to that in the control group, implying that ticlopidine could effectively inhibit the metabolism of diltiazem. In conclusion, the concomitant use of ticlopidine significantly enhanced the oral bioavailability of diltiazem in rats by inhibiting CYP3A4-mediated metabolism in the intestine and/or liver rather than by inhibiting intestinal P-gp activity or renal elimination of diltiazem.

Effects of Amlodipine on the Pharmacokinetics of Warfarin after Oral and Intravenous Administration of Warfarin in Rats

  • Choi, Dong-Hyun;Piao, Yong-Ji;Choi, Eun-Joo;Choi, Jun-Shik;Burm, Jin-Pil
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.493-497
    • /
    • 2011
  • The aim of this study was to investigate the effect of amlodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of amlodipine (0.1 or 0.4 mg/kg) in rats. The effect of amlodipine on the P-glycoprotein (P-gp) as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Amlodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 9.1 ${\mu}M$. Compared to those animals in the oral control group (warfarin without amlodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.1 mg/kg, p<0.05; 0.4 mg/kg, p<0.01) by 26.5-53.5%, and the peak plasma concentration ($C_{max}$) was significantly higher (0.4 mg/kg, p<0.05) by 26.2% after oral administration of warfarin with amlodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.26- to 1.53-fold and the absolute bioavailability of warfarin with amlodipine was significantly greater by 61.7-72.5% compared to that in the control group (47.4%). In contrast, amlodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism in the intestine and/or liver rather than renal elimination and P-gp by amlodipine.

Pharmacokinetic Interaction between Nisoldipine and Repaglinide in Rats

  • Choi, In;Choi, Dong-Hyun;Yeum, Cheul-Ho;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.498-503
    • /
    • 2011
  • The purpose of this study was to investigate the effects of nisoldipine on the pharmacokinetics of repaglinide in rats. The effect of nisoldipine on cytochrome P450 (CYP) 3A4 activity and P-glycoprotein (P-gp) were evaluated. The pharmacokinetic parameters of repaglinide were also determined in rats after oral (0.5 $mg{\cdot}kg^{-1}$) and intravenous (0.2 $mg{\cdot}kg^{-1}$) administration of repaglinide to rats without or with nisoldipine (0.3 and 1.0 $mg{\cdot}kg^{-1}$). Nisoldipine inhibited CYP3A4 enzyme activity with a 50% inhibition concentration of 5.5 ${\mu}M$. In addition, nisoldipine significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, nisoldipine significantly increased the $AUC_{0-{\infty}}$ and the $C_{max}$ of repaglinide by 46.9% and 24.9%, respectively. Nisoldipine also increased the absolute bioavailability (A.B.) of repaglinide by 47.0% compared to the oral control group. Moreover, the relative bioavailability (R.B.) of repaglinide was 1.16- to 1.47-fold greater than that of the control group. Nisoldipine enhanced the oral bioavailability of repaglinide, which may be attributable to the inhibition of the CYP3A4-mediated metabolism in the small intestine and/or in the liver and to inhibition of P-gp in the small intestine rather than to reduction of renal elimination of repaglinide by nisoldipine. The increase in the oral bioavailability of repaglinide should be taken into consideration of potential drug interactions when co-administering repaglinide and nisoldipine.

Anti-inflammatory Effects in LPS-treated RAW 264.7 Cells and the Influences on Drug Metabolizing Enzyme Activities by the Traditional Herbal Formulas, Yongdamsagan-Tang and Paljung-san

  • Ha, Hyekyung;Jin, Seong Eun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • 대한한의학회지
    • /
    • 제42권4호
    • /
    • pp.10-24
    • /
    • 2021
  • Objectives: Yongdamsagan-tang (YST) and Paljung-san (PJS) in traditional medicine and finasteride in modern medicine are used to treat benign prostatic hyperplasia (BPH). In recent, the use of combination herbal remedies with conventional drugs has been increasing. Therefore, we investigated the anti-inflammatory effects of these drugs to treat BPH and the influence of herbal formulas on finasteride metabolism. Methods: The inhibitory effects of the herbal formulas and finasteride on the production of inflammatory mediators and cytokines were determined in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, the influence of herbal formulas on activities of human drug metabolizing enzymes (DMEs) was assessed using human microsomal enzymes. Results: We observed that YST, PJS and finasteride inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) in RAW 264.7 cells. The half maximal inhibitory concentration (IC50) of YST on PGE2 production was calculated to be below 25 ㎍/mL. YST inhibited the activity of uridine diphosphate-glucuronosyltransterase (UGT) 1A4 with an IC50 value of 49.35 ㎍/mL. The activities of cytochrome P450 (CYP) 1A2, CYP2B6, CYP2C19, CYP3A4, and UGT1A1 were inhibited by PJS (IC50 < 100 ㎍/mL, each). Although PJS and YST inhibited the activities of CYP3A4 and UGT1A4, respectively, these formulas may not influence the metabolism of finasteride because the IC50 values of herbal formulas on DMEs are too high to affect metabolism. Conclusions: Our results suggest that the combination of finasteride and YST or PJS might not influence their drug metabolism and that the drugs may have synergistic effects against BPH.

와파린-리팜핀 병용 시 용량 조절 (Dosage Adjustment before and after Warfarin - Rifampin Combination Therapy)

  • 김동현;김경환;최경희;이광자;이혜숙;손인자;김기봉;이재웅;안혁
    • Journal of Chest Surgery
    • /
    • 제41권3호
    • /
    • pp.354-359
    • /
    • 2008
  • 배경: 와파린은 항응고제로 쓰이는 약물로서 주로 간 대사에 의해 배설되는 약물이다. 리팜핀은 결핵 혹은 심내막염 등에 쓰이는 항생제로 2C9과 3A4를 포함한 CYP계열 효소 유도를 일으키는 대표적인 약물이다. 따라서 두 약물을 병용할 경우 리팜핀의 효소 유도에 의한 와파린 대사율 증가로 와파린의 항응고 효과는 감소한다. 이에 따라 와파린의 적절한 용량 조절이 요구되나 정확한 증량과 감량 정도는 제시되지 못하고 있는 실정이다. 이에 본 연구에서는 와파린 복용 환자 중 리팜핀을 병용하게 된 환자를 대상으로 두 약물의 병용 전후, 상호작용의 정도를 시간 경과에 따라 평가하고, 상호작용에 영향을 미치는 요인을 분석하고 또한 이를 토대로 두 약물의 병용 전후, 임상에서 활용할 수 있는 와파린 용량 결정 방법을 설정하고자 하였다. 대상 및 방법: OO병원 항응고 치료 상담 팀의 상담기록지를 1998년 1월부터 2006년 9월까지 후향적으로 검토하여 리팜핀을 병용하게 된 환자를 대상으로 하였다(n=15). 결과: 리팜핀 병용 전 전체 환자의 평균 INR은 $2.25{\pm}0.52$이며 병용 초기 100일간의 평균 INR은 $1.98{\pm}0.28$이었다. 이 경우 병용 전과 병용 초기의 평균 INR은 유의한 차이가 없었다(paired t-test, p>0.05). 리팜핀 병용 중단 직전 2회 측정한 INR의 평균은 $2.19{\pm}0.34$이고 병용 중단 이후 INR의 평균은 $2.49{\pm}0.43$으로 병용 중단 전과 후의 INR 평균은 유의한 차이를 보였으나(paired t-test, p<0.05)모두 치료유효역 범위 내에 있었다. 결론: 항응고 치료 상담 팀의 용량 조절이 적절하다고 판단하여 항응고 치료 상담 팀의 조절을 근거로 병용 시작 시와 병용 중단시의 와파린 용량조절 수식을 도출해냈다