• 제목/요약/키워드: Cytochrome P450(CYP)3A4

검색결과 157건 처리시간 0.029초

Constitutive Expression and Changes of Cytochrome P450 Isozymes mRNAs by Vehicles (Petrolatum, DMSO, Ethanol) in Rat Skin Using Semi-quantitative RT-PCR

  • Lee, Ai-Young;Lee, Kyung-Hoon;Ko, Duck-Sung;Chey, Won-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.407-412
    • /
    • 2001
  • Many drugs are primarily metabolized by the cytochrome P450s (CYPs). Drug metabolites would be important allergens for adverse drug reactions such as drug eruptions. Skin tests with a suspected drug have conducted to identify causative drugs of drug eruptions, with vehicles such as white petrolatum, DMSO, ethanol. This study will compare the expression of rat CYP isozyme mRNAs between the skin and the liver, with examining an effect of the vehicles on the cutaneous CYPs using semi-quantitative RT-PCR. Thirty-two Sprague-Dawley rats between the ages of six and eight weeks were divided as four groups. One group was used to compare the constitutive mRNA expression between skin and liver, while the others were to examine the effects of three vehicles. The ratios of expression of CYP1A2, CYP2B1/2, CYP2E1, CYP3A1, and CYP4A1 were significantly higher in the liver than the skin. However, CYP1A1 and CYP2C11 were higher in the skin than liver. The effects of vehicles were quite different; white petrolatum significantly induced CYP1A1 (p=0.012) and CYP2C11 mRNAs, while ethanol inhibited CY P1A1 and CYP2B1/2. DMSO did not make any changes. The results suggest that rat skin can participate in drug metabolism with their own CYP isozymes. The effects of vehicles on the cutaneous CYP expression should not be ignored and may be applied for determination of an appropriate vehicle for certain drug(s).

  • PDF

Characterization of Two Self-Sufficient Monooxygenases, CYP102A15 and CYP102A170, as Long-Chain Fatty Acid Hydroxylases

  • Rimal, Hemraj;Lee, Woo-Haeng;Kim, Ki-Hwa;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.777-784
    • /
    • 2020
  • Self-sufficient P450s, due to their fused nature, are the most effective tools for electron transfer to activate C-H bonds. They catalyze the oxygenation of fatty acids at different omega positions. Here, two new, self-sufficient cytochrome P450s, named 'CYP102A15 and CYP102A170,' from polar Bacillus sp. PAMC 25034 and Paenibacillus sp. PAMC 22724,respectively, were cloned and expressed in E. coli. The genes are homologues of CYP102A1 from Bacillus megaterium. They catalyzed the hydroxylation of both saturated and unsaturated fatty acids ranging in length from C12-C20, with a moderately diverse profile compared to other members of the CYP102A subfamily. CYP102A15 exhibited the highest activity toward linoleic acid with Km 15.3 μM, and CYP102A170 showed higher activity toward myristic acid with Km 17.4 μM. CYP10A170 also hydroxylated the Eicosapentaenoic acid at ω-1 position only. Various kinetic parameters of both monooxygenases were also determined.

Simultaneous determination of seven major human cytochrome P450 activities using LC/MS/MS

  • Lee, Seung-Seok;Kim, Hae-Kyoung;Jin, Joon-Ki;Lee, Hye-Won;Kim, John;Lee, Hye-Suk
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.404.1-404.1
    • /
    • 2002
  • A LC/MS/MS method for the simultaneous determination of the activities of seven major human drug-metabolizing cytochrome P450s (CYP3A4. CYP2D6. CYP2C9. CYP1A2, CYP2C19, CYP2A6. and CYP2C8) was developed. This method used an in vitro cocktail of specific substrates (midazolam. bufuralol. diclofenac, ethoxyresorufin. S-mephenYlOin. coumarin. and paclitaxel) and LC/MS/MS. The assay incubation time is 20 min and the analysis time is 8 min/sample. (omitted)

  • PDF

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

In Vitro Inhibitory Effect of Licoricidin on Human Cytochrome P450s

  • Kim, Sunju;O, Heungchan;Kim, Jeong Ah;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제5권3호
    • /
    • pp.84-88
    • /
    • 2014
  • Licoricidin isolated from Glycyrrhiza uralensis is known to have anticancer, anti-nephritic, anti-Helicobacter pylori, and antibacterial effects. In this study, a cocktail probe assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the modulating effect of licoricidin on cytochrome P450 (CYP) enzymes in human liver microsomes. When licoricidin was incubated at $0-25{\mu}m$ with CYP probes for 60 min at $37^{\circ}C$, it showed potent inhibitory effects on CYP2B6-catalyzed bupropion hydroxylation and CYP2C9-catalyzed diclofenac 4'-hydroxylation with half maximal inhibitory concentration ($IC_{50}$) values of 3.4 and $4.0{\mu}m$, respectively. The inhibition mode of licoricidin was revealed as competitive, dose-dependent, and non-time-dependent, and following the pattern of Lineweaver-Burk plots. The inhibitory effect of licoricidin has been confirmed in human recombinant cDNA-expressed CYP2B6 and 2C9 with $IC_{50}$ values of 4.5 and $0.73{\mu}m$, respectively. In conclusion, this study has shown the potent inhibitory effect of licoricidin on CYP2B6 and CYP2C9 activity could be important for predicting potential herb-drug interactions with substrates that mainly undergo CYP2B- and CYP2C9-mediated metabolism.

체외배양 생쥐정소세포에서 합성에스트로겐이 P450 등위효소의 발현에 미치는 영향 (Effects of Xenoestrogens on Gene Expression of Cytochrome P450 Genes in in vitro Cultured Mice Spermatogenic Cells)

  • 이호준;김묘경;고덕성;김길수;강희규;김동훈
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권2호
    • /
    • pp.131-140
    • /
    • 2001
  • Objective: To know the effects of xenoestrogen on spermatogenesis, we investigated the expression of cytochrome P450s enzymes (CYPscc, $CYP_{17{\alpha}}$, CYP19) and $3{\beta}$-HSD genes involved in steroidogenesis. Methods: Mouse testicular cells were prepared from 15-day-old ICR mice which had only pre-meiotic germ cells by enzyme digestion using collagenase and trypsin. Testicular cells were cultured in DMEM supplemented with FSH (0.1 IU/ml) and 10% FBS or medium with estrogen ($E_2$), bisphenol-A (BPA), octylphenol (OP; $10^{-9},\;10^{-7},\;10^{-6},\;10^{-5},\;10^{-4}M$, respectively) and aroclor 1254 (A1254) known as PCBs for 48 hours. The gene expression of cytochrome P450 enzymes were examined by semi-quantitive RT-PCR. The production of estrogen and testosterone was examined by RIA. Results: As results, expression of CYPscc mRNA was not significantly decreased, but $3{\beta}$-HSD and $CYP_{17{\alpha}}$. mRNA were significantly dose-dependent decreased. And production of testosterone and estrogen were not different except BPA and OP group ($10^{-5}M$). Conclusion: BPA, OP and A1254 might inhibit steroidogenesis by decreasing CYPscc, $3{\beta}$-HSD and $CYP_{17{\alpha}}$. mRNA expression in the mouse testis. These results suggest that BPA, OP and PCBs like as an endocrine disruptors inhibit the productions of steroidogenic enzymes and decrease the production of T and E by negative feedback mechanism. Therefore, these might disrupt steroidogenesis in Leydig cells of testis and would disturb testicular function and subsequently impair spermatogenesis.

  • PDF

인체 간 microsome에서 pentoxifylline 대사체 M-1의 시험관내 대사 (In vitro Metabolism of Pentoxifylline Metabolite M-l in Human Liver Microsomes)

  • 신혜순
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.834-842
    • /
    • 1999
  • The metabolism and pharmacokinetics of M-l, which is metabolite of pentoxifylline, have been studied in human liver microsomes. Biphasic kinetics was observed from the Eadie-Hofstee plot for the formation of both metabolites of M-l. For the kinetics of pentoxifylline, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 1,648 and 5,622 nmol/min/mg protein, and the estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.180 and 4.829 mM, respectively. For M-3, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 0.062 and 0.491 nmol/min/mg protein, and estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.025 and 1.216 mM. The formations of pentoxifylline and M-3 from M-1 were indentified by using several selective inhibitors of cytochrome P450 isoformes at 0.05-5 mM concentration of M-1 in human liver microsomes. For the analysis of low (0.05 mM) concentration of M-1, where the affinity was expected as low, indicated that CYPlA2 and CYP3A4 were major P450 isoforms responsible for pentoxifylline and M-3 formation. CYP3A4 and CYP2A6 appeared to be P450 isoforms responsible for M-3 formation at high (5 mM) concentration of M-1.

  • PDF

암브록솔과 세티리진의 Cytochrome P450 저해 활성 평가 (In Vitro Assessment of Cytochrome P450 Inhibition by Ambroxol and Cetirizine)

  • 김봉희;류창선;장힘찬;이상윤;이지윤;채정우;권광일;김상겸
    • 약학회지
    • /
    • 제57권3호
    • /
    • pp.194-198
    • /
    • 2013
  • In the present study we evaluated drug-drug interaction potential of ambroxol and cetirizine mediated by inhibition of CYP isoforms including CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 using pooled human liver microsomes (HLMs). As measured by liquid chromatography-electrospray ionization tandem mass spectrometry, cetirizine and ambroxol inhibited significantly CYP2E1 but the maximal inhibition was approximately 36% at 10 ${\mu}M$ cetirizine and 28% at 3 ${\mu}M$ ambroxol. In addition, CYP2D6 activity was decreased to approximately 83% of control activity in pooled HLM incubated with 3 ${\mu}M$ ambroxol. Activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 were not significantly inhibited by cetirizine and ambroxol. Considering their maximal plasma concentration in human ($C_{max}$ of cetirizine is approximately 0.67 ${\mu}M$ and $C_{max}$ of ambroxol is 0.044 ${\mu}M$), these two drugs have very low possibility in drug-drug interaction by CYP inhibition in clinical situations.

Pharmacokinetic Changes in Drugs during Protein-Calorie Malnutrition: Correlation between Drug Metabolism and Hepatic Microsomal Cytochrome P450 Isozymes

  • Lee, Joo-Hyun;Suh, Ok-Kyung;Lee, Myung-Gull
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.693-712
    • /
    • 2004
  • The rats with protein-calorie malnutrition (PCM, 5% casein diet for a period of 4-week) were reported to exhibit 60 and 80% suppression in the hepatic microsomal cytochrome P450 (CYP) 1 A2 and CYP2C11 levels, respectively, and 40-50% decreases in CYP2E1 and CYP3A 1/2 levels compared to control (23% casein diet for a period of 4-week) based on Western blot analysis. In addition, Northern blot analysis showed that CYP1 A2, CYP2E1, CYP2C11, and CYP3A1/2 mRNAs decreased in the state of PCM as well. Hence, pharmacokinetic changes of the drugs in rats with PCM [especially the area under the plasma concentration-time curve from time zero to time infinity (AUC) changes of metabolite(s)] reported from literatures were tried to explain in terms of CYP isozyme changes in the rats. Otherwise, the time-averaged nonrenal clearance ($CL_{NR}$) of parent drug was compared. Pharmacokinetic changes of the drugs in other types of malnutritional state, such as kwashiorkor and marasmus, in both human and animal models were also compared. The drugs reviewed are as follows: diuretics, antibiotics, anticancer agents, antiepileptics, antiarrythmics, analgesics, xanthines, antimalarials, and miscellaneous.

심혈관질환약물과 향정신성약물의 약물상호작용 (Drug Interactions between Cardiovascular Agents and Psychotropic Drugs)

  • 박주언;정경희
    • 정신신체의학
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2011
  • 많은 심혈관질환약물과 향정신성약물 간에 다양한 약물상호작용이 존재하며 이러한 약물들의 대부분이 시트크롬(cytochrome, CYP)450 효소의 기질, 억제제, 유도제로 작용하면서 약물상호작용이 일어나게 된다. 주로 CYP2D6와 CYP3A4를 억제하는 향정신성약물로 인해 같이 투여되는 심혈관질환약물의 효과가 변할 수 있고 부작용까지 나타날 수 있다. 이런 상황을 고려하고 반대의 경우도 포함하여 흔히 처방되는 두 종류의 약물을 병용 투여하는 경우 고려해야 할 부분에 대해서 심혈관질환약물 분류에 따라 논하였다. 대부분의 베타차단제는 CYP2D6의 대사에 의존하므로 이 대사를 억제하는 bupropion, chlorpromazine, haloperidol, SSRIs, quinidine 등을 사용했을 때 베타차단제의 독성이 나타날 수 있다. 앤지오텐신 관련 약물과 이뇨제가 lithium의 농도를 변화시키는 점도 고려하여야 한다. 칼슘통로차단제 및 콜레스테롤강하제를 CYP3A4의 강력한 억제제인 amiodarone, diltiazem, fluvoxamine, nefazodone, verapamil 등과 함께 사용하였을 때 약물 상호작용에 따른 부작용에 유의하여야 한다. 항부정맥제를 복용하는 환자에서 QT 간격 증가를 야기하는 약물이나 관련 CYP450 효소를 억제하는 약물을 동시에 투여하는 것은 삼가거나 적극적인 관찰이 필요하다. Digoxin과 warfarin이 병용 투여되는 향정신성약물로 인해 혈중 농도가 변하는 것도 임상적으로 중요하다.

  • PDF