• Title/Summary/Keyword: Cymbidium

Search Result 122, Processing Time 0.024 seconds

Optimization of Cymbidium transformation system by the particle gun techniques (DNA 입자총에 의한 Cymbidium속 난의 형질전환 조건 검토)

  • Hong, Kyung-Ae;So, In-Sup;Lee, Ok-Young;Cheong, Choong-Duk;Riu, Key-Zung;U., Zang-Kual
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.260-264
    • /
    • 1996
  • Process of particle bombardment for efficient transformation of Cymbidium virescence rhizome microcross sections was investigated using Biolistic particle delivery system with pBI121 harboring the ${\beta}-glucuronidase$(GUS) and the neomycin phosphotransferaseII(nptII). The best result was obtained from the combination of $1.11{\;}{\mu}m$ tungsten particles coated with pBl121, $77.33kg/cm^2$ helium pressure, 6.35 mm gap distance, and 7.0 cm target distance. Transient expression of the reporter gene, GUS, bombarded into the rhizome microsections was observed by the histochemical assay. The marker gene, nptII, delivered by bombarding the tungsten particles coated with the plasmid DNA was identified in the transformed rhizome by polymerase chain reaction.

  • PDF

Induction of Chlorophyll Deficient Mutant Plant of Cymbidium kanran by EMS Treatment (EMS처리에 의한 한란의 엽록소 결핍 돌연변이 식물체의 유도)

  • 이효연;정재성;이종석
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.183-187
    • /
    • 1998
  • Chlorophyll mutants were produced by treating the rhizome of Cymbidium kanran with mutagen, EMS(ethyl methan sulfonate). The germination ratio of Cymbidium kanran seeds was 5.5 times higher when the seeds were treated with ultrasonic treatment for 20 minutes than untreated control. Fifty to sixty percent of the rhizomes became dark brown when they were cultured in a liquid growth medium containing 0.2% EMS for three weeks. When the dark-brown rhizomes were cultured in a solified MS medium, new rhizomes were developed from a part of the old ones. Chlorophyll mutant rhizomes were obtained from a meristem tissue by a subculturing the cuts of these new rhizomes for a year. Of the chlorophyll mutants, a zigzag-striped type of rhizome was dominant and light-yellow and albino ones were also produced. While the zigzag-striped type rhizomes were differentiated into green and striped plant, the light yellow and the white rhizomes produced yellow-striped and albino plants repectively.These results indicate that the EMS treatment on the rhizome is an effective means to induce a chlorophyll mutant. We believe that this method may be useful to produce variegated plants chlorophyll mutants from other orchids.

  • PDF

Injury Symptoms of Orchids by Sulfur dioxide Gases in Greenhouse (시설내 아황산가스에 의한 난의 피해 증상)

  • Lee, Young-Ran;Choi, Seong-Youl;Kwon, Oh-Keun;Huh, Eun-Joo
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.237-241
    • /
    • 2009
  • This study was conducted to determine injury symptoms of orchids by sulfur dioxide gases, three orchid plants (Phalaenopsis, Cymbidium, Oncidium) were exposed to sulfur dioxide gas in an enclosed growth chambers. Sulfur dioxide gases treatments consist of five different concentrations (0, 5, 10 25, and 50 ppm) and plant exposure of 18 hours with $25{\pm}5^{\circ}C$ air temperature and $50{\pm}5%$ relative humidity. SPAD values for chlorophyll content and percent leaf injury as well as leaf ion exudation were measured before and after the gas treatments. Phalaenopsis leaves showed 23.3% leaf injury at 10 ppm sulfur dioxide gas, whereas Cymbidium and Oncidium showed 4.0 and 4.4% leaf injury under 25 ppm or less, respectively. Major leaf injury symptoms appeared as initial water-soaking under side of the leaf, followed by rapidly progressed complete leaf discolorization or chlorosis. As the gas concentration increased, the SPAD value decreased while ion exudation increased. Cymbidium and Oncidium were resistant to sulfur dioxide gas than Phalaenopsis.

Application of Rapid and Reliable Detection of Cymbidium Mosaic Virus by Reverse Transcription Recombinase Polymerase Amplification Combined with Lateral Flow Immunoassay

  • Do-Hyun, Kim;Rae-Dong, Jeong;Sena, Choi;Ho-Jong, Ju;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.665-672
    • /
    • 2022
  • Cymbidium mosaic virus (CymMV) is one of economically important viruses that cause significant losses of orchids in the world. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow immunostrip (LFI) assay was developed for the detection of CymMV in orchid plants. A pair of primers containing fluorescent probes at each terminus that amplifies highly specifically a part of the coat protein gene of CymMV was determined for RT-RPA assay. The RT-RPA assay involved incubation at an isothermal temperature (39℃) and could be performed rapidly within 30 min. In addition, no cross-reactivity was observed to occur with odontoglossum ringspot virus and cymbidium chlorotic mosaic virus. The RT-RPA with LFI assay (RT-RPA-LFI) for CymMV showed 100 times more sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR). Furthermore, the RT-PCR-LFI assay demonstrated the simplicity and the rapidity of CymMV detection since the assay did not require any equipment, by comparing results with those of conventional RT-PCR. On-site application of the RT-RPA-LFI assay was validated for the detection of CymMV in field-collected orchids, indicating a simple, rapid, sensitive, and reliable method for detecting CymMV in orchids.

Use of Triton X-100 and Sephacryl S-500 HR for the Purification of Cymbidium Mosaic Virus from Orchid Plants

  • Han, Jung-Heon;La, Yong-Joon;Lee, Cheol-Ho
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.34-37
    • /
    • 1999
  • Cymbidium mosaic virus (CyMV) was purified from CyMV infected orchid plant leaves by Sephacryl S-500 HR column chromatography. Partial purification was done by solubilization with Triton X-100 (alkylphenoxypolyethoxy ethanol) and precipitation with polyethylene glycol (PEG 6,000) followed by ultracentrifugation on 30% sucrose cushion. Based on the spectrophotometric analysis, 33 mg of CyMV could be obtained form 100 g of CyMV-infected orchid plant leaves. The purified CyMV represented one distinct homogeneous band by SDS-PAGE, and electron microscopy revealed that it was highly homogeneous and not fragmented. Bioassay demonstrated that the purified CyMV had a normal infectivity to Chenopodium amaranticolor and orchid plants. Based on these results, the purification method in this work could be served as an improved method for the purification of CyMV and similar viruses with good yield, high purity and native integrity.

  • PDF

Identification of Orchid Mycorrhizal Fungi Isolated from Five Species of Terrestrial Orchids in Korea (한국에 자생하는 5종의 지생란에서 분리한 난균근균의 동정)

  • Youm, Jae-Young;Han, Han-Kyeol;Chung, Jae-Min;Cho, Yong-Chan;Lee, Byung-Chun;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.40 no.3
    • /
    • pp.132-135
    • /
    • 2012
  • This study was performed to isolate and identify the orchid mycorrhizal fungi (OMF) from roots of five species of terrestrial orchids in Korea; Cymbidium goeringii, Spiranthes sinensis, Calanthe discolor, Bletilla striata, Pogonia minor. DNA was extracted from isolated OMF and ITS region was amplified using primers, ITS1-OF and ITS4-OF. Four species of OMF belong to Tulasnellaceae and Sebacinaceae were identified; Tulasnella calospora, Tulasnella irregularis, Tulasnella sp., Sebacina vermifera.

Days to Germination and Effect of Growth Regulator on Rhizome Growth in Cymbidium goeringii Hybrid

  • Kang, Tae-Jin;Yang, Deok-Chun
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.144-148
    • /
    • 2003
  • Germination efficiency, such as days to germination and conditions for the hybrid seeds, was tested after hybrid seeds were sown on the medium. Seeds were germinated from 67 to 126 days after seeding in all cross combinations, and germination condition was different among hybrid combinations. There was big difference on days to germination based on the different media, that is, days to germination in the hyponex medium was shorter than that in the Knudson C medium. Mutants such as MMS and NaN$_3$ were used to cause mutation. Germination occurred with 0.1 % NaN$_3$ and MMS. However, even though germination occurred in other treatments (0.01 % and 0.2% of NaN$_3$ and MMS), brownish phenomenon was intense, or did not proceed and got worse after 4-5 months of seeding. In addition, it was performed to choose appropriate medium for the growth of Cymbidium rhizome whose media adaptability is more different than other orchids. Different concentration of NAA and Kinetin was used. As a result, C. goeringii hybrid showed difference for the concentration of NAA and Kinetin combination.

  • PDF

Interactions of Newly Isolated Orchid Mycorrhizal Fungi with Korean Cymbidium kanran Hybrid 'Chungsu'

  • Lee, Jun-Ki;Lee, Sang-Sun;Eom, Ahn-Heum;Paek, Kee-Yoeup
    • Mycobiology
    • /
    • v.31 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • Two fungal isolates obtained from roots of Cymbidium goeriingii in Jeju island were confirmed to be symbiotic with orchid plantlets, and were compared with other orchid mycorrhizal(OM) fungi previously isolated. The two isolates differed in their peloton structures formed in the roots of Cymbidium kanran hybrid 'Chungsu' and in responses of orchid plant. These two isolates differed from the additionally tested OM fungi in some features, and from root damaging species of Rhizoctonia and Fusarium as based on cluster analysis after PCR-RAPD with the primers, Bioneer-28 and OPO-2. With this simple and fast technique, it was possible to distinguish OM fungi from the plant root pathogenic fungi based on calculation of their polymorphic bands. This technique can therefore be helpful to distinguish the OM fungi from the root pathogens. Particularly, the new isolates are considered as new resource of symbiotic fungi for horticultural industries.

Effect of Waste Tire Chips on the Growth and Nutrient Content of Cymbidium Pine Clash 'Moon Venus' (심비디움 Pine Clash 'Moon Venus'의 생장 및 양분함량에 미치는 폐타이어칩의 영향)

  • Kim, Hong-Yul
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.17-21
    • /
    • 2009
  • This experiment was conducted to clarify the effect of waste tire chip on the growth and nutrient content of Cymbidium Pine Clash 'Moon Venus'. There were no significant differences between bark only medium and mixed medium in leaf and stem growth. But in both medium and large size chip only, the leaf and stem growth decreased remarkably. The total number of roots, new roots and root length had similar tendency as in leaf and stem growth. In medium and large tire chip only, the decayed roots increased. There were no significant differences between bark only medium and mixed medium in total sugar, starch, content of chrolophyll, N, P and K, but decreased significantly in both medium and large size chip only.

New Cymbidium Variety "Yellow Evening", with Brownish Yellow Flower Color on Red Spot Lip and Medium Plant

  • Kim, Mi-Seon;Cho, Hae-Ryong;Rhee, Hye-Kyung;Lim, Jin-Hee;Lee, Young-Ran;Shin, Hak-Ki
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.358-362
    • /
    • 2009
  • A New Cymbidium variety "Yellow Evening" was developed from a cross between "Oji" and "Valley Flower Cherry Life" followed by seedling and line selections at the National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA) in 2004. After investigation of the characteristics and selection for 9 years (1996-2004), it has been selected specifically pot orchid flower. "Yellow Evening" has medium plant height and semi-erect peduncle. It has medium flowering habit and brownish yellow flowers (RHS, Y11B: petal and sepal) with grayed purple GP183A) spot on lip, when fully opened. Each peduncle has 15.3 flowers with diameter of about 7.4 cm. It has adequate peduncle height, with some curved and spreading petal and sepals. Under optical culture conditions, it started to bloom early-winter (November).