• 제목/요약/키워드: Cylindrical shape

Search Result 636, Processing Time 0.025 seconds

Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector (반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Kang, Yong-Heack;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

The effects of surface grinding and polishing on the phase transformation and flexural strength of zirconia

  • Lee, Ji-Young;Jang, Geun-Won;Park, In-Im;Heo, Yu-Ri;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to evaluate the effect of surface grinding and polishing procedures using high speed zirconia diamond burs with different grit sizes on the phase transformation and flexural strength of zirconia. MATERIALS AND METHODS. Forty disc shape specimens ($15{\times}1.25mm$) with a cylindrical projection in the center of each disc ($1{\times}3mm$) were fabricated with 3Y-TZP (Prettau, Zirkonzahn, Italy). The specimens were divided into 4 groups (n=10) according to the grinding and polishing procedures: Control group - grinding (coarse-grit diamond bur), Group 1 - grinding (coarse-grit diamond bur) + polishing, Group 2 - grinding (fine-grit diamond bur) + polishing, and Group 3 - grinding (fine grit diamond bur). Each specimen was analyzed by 3D-OM, XRD analysis, and biaxial flexural strength test. RESULTS. Based on the surface morphology by 3D-OM images, polished specimens showed smoother surface and lower roughness value (Ra). In the result of XRD analysis, partial phase transformation from tetragonal to monoclinic zirconia occurred in all groups. Control group, ground with a coarse grit diamond bur, showed more $t{\rightarrow}m$ phase transformation and lower flexural strength than Groups 1 and 2 significantly. CONCLUSION. The flexural strength in all specimens after grinding and polishing showed over 500 MPa, and those were clinically acceptable. However, grinding with a coarse grit diamond bur without polishing induced the phase transformation and low strength. Therefore, surface polishing is required for the occlusal adjustment using a high speed zirconia diamond bur to reduce the phase transformation and to prevent the decrease of flexural strength of zirconia.

Effect of rebar spacing on the behavior of concrete slabs under projectile impact

  • Abbas, Husain;Siddiqui, Nadeem A.;Almusallam, Tarek H.;Abadel, Aref A.;Elsanadedy, Hussein;Al-Salloum, Yousef A.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.329-342
    • /
    • 2021
  • In this paper, the effect of different steel bar configurations on the quasi-static punching and impact response of concrete slabs was studied. A total of forty RC square slab specimens were cast in two groups of concrete strengths of 40 and 63 MPa. In each group of twenty specimens, ten specimens were reinforced at the back face (singly reinforced), and the remaining specimens were reinforced on both faces of the slab (doubly reinforced). Two rebar spacing of 25 and 100 mm, with constant reinforcement ratio and effective depth, were used in both singly and doubly reinforced slab specimens. The specimens were tested against the normal impact of cylindrical projectiles of hemispherical nose shape. Slabs were also quasi-statically tested in punching using the same projectile, which was employed for the impact testing. The experimental response illustrates that 25 mm spaced rebars are effective in (i) decreasing the local damage and overall penetration depth, (ii) increasing the absorption of impact energy, and (iii) enhancing the ballistic limit of RC slabs. The ballistic limit was predicted using the quasi-static punching test results of slab specimens showing a strong correlation between the dynamic perforation energy and the energy required for quasi-static perforation of slabs.

KINEMATIC OSCILLATIONS OF POST-CME BLOBS DETECTED BY K-COR ON 2017 SEPTEMBER 10

  • Lee, Jae-Ok;Cho, Kyung-Suk;Nakariakov, Valery M.;Lee, Harim;Kim, Rok-Soon;Jang, Soojeong;Yang, Heesu;Kim, Sujin;Kim, Yeon-Han
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.61-70
    • /
    • 2021
  • We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we find that all blobs except one show irregular "zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 km s-1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with different speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and fluid dynamic experiments. We find that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15-3.0) from fluid dynamic experiments of bluff spheres, while they are higher than those (0.15-0.25) from MHD simulations of cylindrical shapes. We thus find that blobs formed in a post-CME CS undergo kinematic oscillations caused by fluid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a bluff spherical shape with the background plasma in the post-CME CS.

Double Punch Tensile Strength of Cylindrical Mortar with Steel Fibers aligned in Circumferential Direction by Electro-Magnetic Field (전자기장을 이용하여 강섬유를 원주방향으로 배열시킨 원통형 몰탈의 Double Punch 인장강도)

  • Shin, Sun-Chul;Mukharromah, Nur Indah;Moon, Do-Young;Park, Dae-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • In this study, the direction of the steel fibers mixed in the normal mortar and the steel slag mortar was arranged in the circumferential direction by using an electromagnetic field, and a double punch test was performed to evaluate the effect of magnetic filed exposure on tensile strength and on fracture energy. As a result of the experiment, it was confirmed that it is possible to arrange the steel fibers in the circumferential direction. Tensile strength and displacement at failure were also increased according to the arrangement of steel fibers due to exposure to electromagnetic fields. On the other hand, the fracture energy hardly increased. It is considered that there was a limit in resisting crack growth because the area where the arrangement of steel fibers could be adjusted under the electromagnetic field was not deep to center of specimen and the end shape of the steel fibers were straight not hooked. Additional research is needed to address these issues.

A Study on the Stupas in Xinjiang Uyghur Area - Focused on Da Tang Xi-Yu-Ji(大唐西域記) and Stupa Remains - (신장(新疆) 위구르자치구 지역의 불탑형식 - 『대당서역기(大唐西域記)』의 기록과 현존 유구를 중심으로 -)

  • Cheon, Deuk-Youm;Jung, Ji-Youn;Shin, Gyu-Na
    • Journal of architectural history
    • /
    • v.31 no.4
    • /
    • pp.71-86
    • /
    • 2022
  • This study examines the process of the introduction of stupa, which has originated in India, to the Xinjiang Uyghur region and the features of the stupas in the Xinjiang Uyghur region in detail. This study examines the layout of the buildings in temple compounds and the types, structural elements, and construction methods of the stupas in the Xinjiang Uyghur region in particular by looking into the content of the Da Tang Xi Yu Ji and remaining stupas, which provide examples of stupas at the time. This study finds that due to the characteristics of dry deserts, stupas in Xinjiang Uyghur region, where assimilation between Eastern and Western cultures is seen, were mostly made by pressing clay into a mold and had no interior spaces. Also, construction materials and techniques had been developed and improved in a way that enabled stupas to combat the challenging desert conditions. However, the stupas in this region differed significantly from the wooden tower-like stupas discovered in central China(zhongyuan 中原). The shape of the dome of most stupas in Xinjiang Uyghur region was chosen under the influence of the Gandharan style. Some of the stupas in the region have taken the general forms of the wooden stupas and the others have taken many forms, from cylindrical drums to towers. Also, there have been forests of stupas and stupas similar in form to chaityas and stupas of Vajrayana. Such different forms were transformed and modified through regional history and it was related to the peoples and cultures that produced and used stupas. Stupas evolved into distinct forms in Xinjiang Uyghur region in this way.

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

Investigation of Rheological Properties of Lecithin/D-sorbitol/Water Mixtures (레시틴/디솔비톨/물 혼합물의 유변학적 성질 연구)

  • Eun-Ae Chu;Na-Hyeon Kim;Min-Seok Kang;Yeong-Min Lee;Hee-Young Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.247-251
    • /
    • 2023
  • Lecithin can self-assemble into reverse spherical micelles in organic solvents due to its amphiphilic properties. With additives such as D-sorbitol and water, the reverse spherical micelles are transformed into reverse cylindrical micelles by the morphology change of lecithin molecules. In this study, the rheological properties of lecithin/D-sorbitol/water mixtures were investigated. In addition, the small angle X-ray scattering (SAXS) technique was used to examine the shape and size of the formed nanostructures related to their rheological properties. Such mixtures are expected to be used in drug delivery and oleogels because of their high viscosity and viscoelastic behavior.

Development of An Actuator-Based Blood Pressure Simulator for Automatic Blood Pressure Monitor (자동혈압계 점검을 위한 액추에이터 기반의 혈압 시뮬레이터 개발)

  • Soo Hong Kim;Seung Jun Lee;Mun Hyeok Lim;Hye Min Park;Min Seok Gang;Gun Ho Kim;Kyoung Won Nam
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.49-55
    • /
    • 2024
  • Accurate measurement of blood pressure is essential for classifying an individual's disease, identifying blood pressure-related risks, and managing health. Due to the environmental and health hazards of mercury sphygmomanometers, automatic sphygmomanometers using the oscillometric method are widely used in hospitals as well as in general homes, and have established themselves as a practical standard sphygmomanometer. In this study, we developed a blood pressure simulator using an actuator that provides simulated pressure to an automatic blood pressure cuff. The developed blood pressure simulator adopts an arm-shaped cylindrical shape similar to the situation in which a person measures blood pressure with an automatic blood pressure monitor, and implements a method of transmitting pressure to the cuff using a pressure plate. Accuracy was evaluated through the mean and standard deviation of the difference with the commercialized blood pressure simulator BP PUMP 2, and reproducibility was confirmed using two automatic blood pressure monitors. The developed blood pressure simulator enables automatic blood pressure monitoring in a simple manner and also meets the evaluation standards for accuracy and reproducibility. In the future, as a standardized blood pressure simulator, it is expected to be of great help in evaluating and verifying the performance of automatic blood pressure monitors by supplementing precise hardware and software and building a blood pressure database.

A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water (수중 고온 단일 기포의 열전달 해석 연구)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2024
  • Bubbles generated in water receive an upward buoyant force due to the density and pressure difference of the surrounding fluid. Additionally, the behavior, shape, and heat exchange process of bubbles vary depending on the viscosity, surface tension, rising speed, and size difference with the surrounding fluid. In this study, we modeled speed, and heat transfer of a high-temperature single bubble rising in a cylindrical water tank. For this purpose, velocity, and temperature of the bubbles were calculated using theoretical equations, to be compared with numerical simulation results. The numerical analysis was performed using a commercial software, and the stability of the numerical analysis with mesh size was confirmed through calculation of the grid convergence index. The numerical analysis of the rising speed and temperature of a single bubble showed the values to converge when the minimum cell size was 1/160 of the bubble diameter, and the temperature decrease was confirmed to be the same as that of the surrounding fluid within 0.05 seconds.