• Title/Summary/Keyword: Cylindrical plunge grinding process

Search Result 16, Processing Time 0.023 seconds

Detection Technique of Fault Phenomena Using Power Parameters in Grinding Process

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2002
  • The grinding process has been mainly used fur finishing metal products as final machining stage. But chatter vibration and bum of a workpiece have a bad effect on the machined surface and should be detected in modern grinding process. This paper deals with a fault detection of the cylindrical plunge grinding process by power parameters. During the grinding process the power signals of an induced motor were sampled and used to determine the relationship between fault and change of power parameters. A neural network was used far detecting the grinding fault and an influence of power parameters to the grinding fault was analyzed.

Development of Intelligent Trouble-Shooting System for Grinding Operation (인공지능형 연삭가공 트러블 인식.처리 시스템 개발)

  • Ha, M.K.;Kwak, J.S.;Park, J.W.;Yoon, M.C.;Koo, Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2000
  • The grinding process is very complex and relates many parameters to control the process. As this reason, a theoretical analysis and a quantitative estimation of the grinding process has not been well established. In this study, the in-process monitoring system was suggested by applying the neural network for monitoring and shooting the malfunction of cylindrical plunge grinding process. This system used the power signals from the electric power meter. This neural network was composed of processing elements [4-(5-5)-3] with 4 identified power parameters. Because sensitivity is blunted some minute vibration components, the simulation result of this system has appeared about 10% erroneous recognition in the uncertain pattern and the average success rate of the trouble recognition was about 90%. Consequently, the developed system, which applied to the power signals, can be recognize enough to monitor the grinding process as in-process.

  • PDF

Simulation and Improvement of Grinding Processes for Linear Motion Guide Blocks (선형가이드용 블록 연삭 공정 시뮬레이션 및 개선에 대한 연구)

  • 조명동;김현수;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1018-1021
    • /
    • 1997
  • This paper presents a result of simulation and improvement of grinding process for linear motion guide blocks. A simulation software, which is based on cylindrical grinding process. is used to predict the grinding wheel wear during the grinding process. To validate the simulation, the simulation result is compared with the experimental one. Simulation study is extended to obtain an optimal grinding condition for minimizing the grinding wheel wear. The optimal condition is validated through an experiment.

  • PDF

A Study on the Fault Diagnosis Applied to the Grinding Power Signals (연삭 동력신호를 응용한 결함진단에 관한 연구)

  • 곽재섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.108-116
    • /
    • 2000
  • Undesired trouble such as chatter vibration and burning on the ground surface appears frequently in the cylindrical plunge grinding process. Establishment of a credible fault diagnostic system for the grinding process is the major purpose of this study. Power signals generated during the grinding operation were sampled and analyzed to determine the relationship between grinding troubles and behavior of signal changes. In addition, a neural network was optimized with a momentum coefficient a learning rate, and a structure of the hidden layer through the iterative learning process. Based on the established system, success rates of the trouble recognition were verified.

  • PDF

High Efficient Cylindrical Grinding of Ferrous Materials Using Electrolytic In-process Dressing Method(ELID) (전해 인프로세스 드레싱법(ELID)을 이용한 철강재료의 고능률 원통연삭)

  • Lee, Deug Woo;Takahashi, I.;Ohomori, H.;Nakagawa, T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.99-105
    • /
    • 1995
  • This paper provides a highly efficient grinding for ferrous materials using ELID-grinding method. The grinding efficiency using ELID gring method with CIFB-cBN wheel and CB-cBN wheel is compared with general grinding method with V-cBN wheel. This paper measured grinding ratio for plunge grinding and grinding resistance for traverse grinding in order to investigate grinding ability. The results show that ELID grinding methods is useful for the high efficient grinding of ferrous materials.

  • PDF

Reducing the Non Grinding Time in Grinding Operations(1st Report) -Reducing the Air Grinding time using Sound Sensor- (연삭가공에 있어 비가공 시간 단축에 관한 연구(I) -음향센서를 이용한 공연삭 시간의 단축-)

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.85-91
    • /
    • 1997
  • Air grinding time in grinding process has a great effect on its efficiency due to low feedrate. This paper presents a reduction methos of air grinding time in cylindrical plunge grinding operation. Tje reduction of air grinding time is accomplished by finding the distance between contact point and rising point of ultra- sonic signal of the grinding wheel to workpiece. It uses a variation of sound signal generated by the flow of coolant when the grinding wheel approaches to workpiece. The ultrasonic sensor with 23 kHz center fre- quency and 8 kHz bandwidth is used to find the nearest approaching point(NAP). Monitoring and control system of the grinding conditions is implemented with CNC controller to control feedrate override and ultrasonic sensor to find NAP. The experimental result shows that the ultrasonic signal is a good measure- ment to find NAP. But it needs the considerations for the effect of the relationship between flowrate of coolant and diameter of workpiece.

  • PDF