• Title/Summary/Keyword: Cylindrical enclosure

Search Result 27, Processing Time 0.026 seconds

An Experimental Study on the Natural Convection Heat Transfer with a Heat Source in a Top-Vented Cylindrical Enclosure (내부열원을 갖는 Top-vented 원통형 밀폐공간에서의 자연대류에 관한 실험적 연구)

  • Kang, Kweon-Ho;Shin, Hyun-Kyoo;Shin, Chee-Burm;Yoo, Jai-suk;Kim, Chul;Park, Young-Moo
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.203-208
    • /
    • 1996
  • An experimental study was conducted on the natural convection heat transfer with a heat source (heater) in a top-vented cylindrical enclosure. Using an Air Controlled Oxidizer (ACO) for treatment of depleted uranium chips, the heat transfer characteristics of the ACO was studied with various heat generation. Heat flux, Nusselt number, Grashof number and Rayleigh number were obtained and the relation between Nusselt number and Rayleigh number was derived.

  • PDF

Natural Convection Heat Transfer in Inclined Cylindrical Water Layers (경사진 원형 수층에서의 자연대류 열전달)

  • 장병훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.787-794
    • /
    • 2003
  • The effect of inclination angle on natural convection heat transfer has been studied for water layers. The range of the Raleigh number was from the subcritical value to 1.4${\times}$10$^{7}$ , and the range of the inclination angle, $\theta$, measured from the horizontal was 0$\leq$$\theta$$\leq$180$^{\circ}$. For horizontal water layers, present results agreed well with the results of previous investigators and also showed significant departures from the results of air layers in the turbulent regime. Inclined cylindrical water layers showed secondary maxima in heat transfer, whereas rectangular air layers showed continuous decline of Nusselt number.

Characteristics of Radiated Electromagnetic Fields From A Cylindrical Cavity (원통형 캐비티에서 방출되는 방사 전자파 특성)

  • Kim, Hyo-Gyun;Cho, Jun-Ho;Lim, Dong-young;Kim, Ki-Chai
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.237-244
    • /
    • 2016
  • This paper, presents the characteristics of electromagnetic fields radiated from a pole-transformer. The cylindrical cavity is used to measure electromagnetic fields radiated from a pole-transformer when partial discharge occures inside the pole-transformer. The theoretical analysis is conducted by a finite difference time domain (FDTD) method. As a result, frequency characteristics of the radiated electromagnetic waves emitted from the inside the cavity to the outside through the 1st and 2nd bushings could be observed for the configuration of the cylindrical cavity with a radiation window. The frequency characteristics of electromagnetic field are also studied according to the enclosure structure of the cylindrical cavity. To verify the theoretical analysis, computed results are compared to experimental results.

The Insulation Characteristics and The Electric Field Anlaysis by Conducting Particle in $SF_6$ Gas ($SF_6$가스 내 금속이물 존재시 절연특성 및 전계해석)

  • 조국희;이동준;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.14-19
    • /
    • 2001
  • This paper describes the influence of conducting particle in the coaxial cylindrical electrodes under alternating voltage condition investigated using breakdown electric field and electro magnetics simulation method. Simulated particle-location in GIS chamber were the particle on electrode, the particle on enclosure and free moving particle. As results, it was founded that in case of breakdown electric field of the GIS chamber, breakdown electric field of particle on electrode was the lowest, that of free moving particle was middle and that of particle on enclosure was the highest. And in case of the electric field analysis with particle locations, electric field of particle on electrode was the highest, that of lifted particle was middle and that of particle on enclosure was the lowest. This results can offer a practical reference on the insulation design of domestic GIS.

  • PDF

Numerical analysis of turbulent natural convection in a cylindrical transformer enclosure (변압기를 모델링한 두 개의 동심 원형 실린더 내에서 난류 자연대류의 수치해석)

  • 오건제;하수석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.157-166
    • /
    • 1999
  • Numerical calculations of turbulent natural convection in an enclosure of the 20 kYA oil-immersed transformer model are presented. The transformer is modelled as two concentric cylinders with different heights and diameters. The thermal boundary layers are well represented in the temperature distributions along the wall of the transformer model. The flow stratification between the hot and cold walls can not be seen in the transformer model. The turbulence eddy viscosity has its maximum at the center of the core and its maximum values at the top of the core are larger than those at the bottom of the core.

  • PDF

Solutions of Radiative Transfer for Nongray Gases within a 3-D Cylindrical Enclosure

  • Park, Won-Hee;Jung, Hyun-Sung;Kim, Tae-Kuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • In multi-dimensional systems, various solution schemes for radiative transfer are suggested but the applicabilities and accuracies of these schemes have not yet fully tested due to the lack of reference solutions especially for nongray gases. In this paper we present some precise radiative transfer solutions for a black walled 3-dimensional cylindrical system filled with nongray gases having uniform temperature and concentration. The ray-tracing method with the $T_N$ quadrature set and the SNB model are used to obtain the radiative transfer solutions by the nongray gases. The solutions presented in this paper are proved to be quite accurate and can be regarded as the reference solutions for the radiative transfer by nongray gases.

Study on Nongray Gas Radiation within a Cylindrical Enclosure by Using the Narrow Band Model (좁은밴드모델을 이용한 실린더 내의 비회색 가스 복사열전달 연구)

  • Park, Won-Hee;Jung, Hyun-Sung;Kim, Tae-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.859-867
    • /
    • 2002
  • Radiative transfer in energy systems such as furnaces, combustors, boilers and high temperature machineries is a significant mode of heat transfer. Although there are many solution schemes suggested for analysis of radiative transfer in multi-dimensional systems, the applicabilities and accuracies of these schemes have not fully tested for nongray gases. Especially reference data for enclosures of non-orthogonal shapes are not yet enough. In this paper we present some precise radiative transfer solutions for a black walled 3-dimensional cylindrical system filled with nongray gases. The SNB(statistical narrow band) model and the ray-tracing method with the T$_{N}$ quadrature set are used for finding nongray solutions. Although the solution method used in this study is not suitable for engineering purposes, the resulting solutions are proved to be quite accurate and can be regarded as the exact solutions and the results presented in this paper can be used in developing various solution schemes fur radiative transfer by real gas mixtures.s.

The Effect of a Hot-wire Supporter on the Flow Between Corotating Disks in Shroud (밀폐된 동시회전 디스크 유동장에 대한 열선 지지대의 영향)

  • Kong Dae-Wee;Joo Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.663-666
    • /
    • 2002
  • Hard disk drived (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. The distribution of pressure disturbance on disks has relation to flow structure. To investigate the flow structure, time-resolved hot-wire measurements of the circumferential velocity component were obtained for the flow between the center pair of four disks of common radius $R_2$ coretating at angular velocity ${\Omega}$ in a fixed cylindrical enclosure. Hot-wire supporter acts as an obstruction in this case. The effects of rotating speed and size of hot-wire supporter diameter between disks on the flow driven by disks were investigated. Velocity spectra at the fixed space were measured to obtain the structure of inner and outer region in flow field.

  • PDF

Visualization of the flow between co-rotating disks in shroud with an obstruction (장애물을 포함한 동시회전 디스크 내부의 비정상 유동가시화)

  • 공대위;도덕희;주원구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1152-1156
    • /
    • 2003
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. PIV measurement was used fer the unsteady flow between the center pair of four disks of four times larger than common radius of HDD disk at several rpm in a fixed cylindrical enclosure. The boundary between inner region and outer region is detected using PIV measurement and the number of dominant vortices s determined clearly. Tip vortices generated by an obstruction with actual-like configuration can be found at inner region. Oscillating flow from the obstruction appears at outer region with complex flow pattern.

  • PDF

Compact Triple-Mode Bandpass Filter Using a Cylindrical Dielectric Resonator (원통형 삼중모드 유전체 공진기를 이용한 대역 통과 여파기의 설계)

  • Jang, Geon-Ho;Park, Nam-Shin;Kim, Byung-Chul;Lee, Don-Yong;Won, Jung-Hee;Wang, Xu-Guang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2015
  • In this paper, the design of a compact triple-mode bandpass filter using a high-Q cylindrical dielectric resonator is proposed. In detail, the triple $TE_{01{\delta}}$ modes along three orthogonal axes are used and novel coupling structure in the metallic enclosure is adopted to introduce the coupling between the resonant modes. Due to the cross coupling, the proposed bandpass filter has an asymmetric frequency response with flexible three transmission zeros, one of which can be located very close to the passband edge to provide an extremely sharp skirt characteristic with low insertion loss. The proposed filter is about 60 % miniaturized compared with conventional single-mode dielectric resonator filter. The proposed bandpass filter design is validated by the circuit and 3D EM simulations and measurements compared to the target specifications.