DOI QR코드

DOI QR Code

Study on Nongray Gas Radiation within a Cylindrical Enclosure by Using the Narrow Band Model

좁은밴드모델을 이용한 실린더 내의 비회색 가스 복사열전달 연구

  • Published : 2002.06.01

Abstract

Radiative transfer in energy systems such as furnaces, combustors, boilers and high temperature machineries is a significant mode of heat transfer. Although there are many solution schemes suggested for analysis of radiative transfer in multi-dimensional systems, the applicabilities and accuracies of these schemes have not fully tested for nongray gases. Especially reference data for enclosures of non-orthogonal shapes are not yet enough. In this paper we present some precise radiative transfer solutions for a black walled 3-dimensional cylindrical system filled with nongray gases. The SNB(statistical narrow band) model and the ray-tracing method with the T$_{N}$ quadrature set are used for finding nongray solutions. Although the solution method used in this study is not suitable for engineering purposes, the resulting solutions are proved to be quite accurate and can be regarded as the exact solutions and the results presented in this paper can be used in developing various solution schemes fur radiative transfer by real gas mixtures.s.

Keywords

References

  1. Hottel, H.C. and Sarofim, A.F., 1967, Radiative Transfer, McGraw-Hill
  2. Howell, J.R. and Perlmutter, M., 1964, 'Monte Carlo Solution of Thermal Transfer through Radiant Media Between Gray Walls,' ASME Journal of Heat Transfer, Vol. 86, No. 1, pp. 116-122 https://doi.org/10.1115/1.3687044
  3. Mengue, M.P. and Viskanta, R., 1985, 'Radiative Transfer In Three-Dimensional Rectangular Enclosures Contatining Inhomogeneous, Anisotropically Scattering Media', Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 33, No. 6, pp. 533-549 https://doi.org/10.1016/0022-4073(85)90021-4
  4. Lockwood, F.C. and Spalding, D.B., 1971, 'Prediction of a Turbulent Duct Flow with Significant Radiation,' Proc. Thermodynamics Colloquium
  5. Carlson, B.G. and Lathrop, K.D., 1968, 'Transport Theory-the method of Discrete Ordinates,' Computing Methods in reactor physics, Greenspan, H., Kelber, C. N., Okrent, D. eds., Gordon and breach, New York
  6. Fiveland, W.A., 1984, 'Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures,' ASME Journal of Heat Transfer, Vol. 106, pp. 699-706 https://doi.org/10.1115/1.3246741
  7. Kim, T.K. and Lee, H., 1988 'Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectanqular Enclosures,' Int. J. of Heat and Mass Transfer, Vol. 31, No. 8, pp. 1711-1721 https://doi.org/10.1016/0017-9310(88)90283-9
  8. Raithby, G.D. and Chui, E.H., 1990, 'A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosure with Participating Media,' ASME Journal of Heat Transfer, Vol. 112, pp. 415-423 https://doi.org/10.1115/1.2910394
  9. Chai, J.C., Lee, H.S. and Patankar, S.V., 1994, 'Treatment of Irreguar Geometries Using a Cartesian Coordinates Finite-Volume Radiation Heat Transfer Procedure,' Numberical Heat Transfer, Part B, Vol. 26, pp. 225-235 https://doi.org/10.1080/10407799408914927
  10. Cheung, K.B. and Song, T.H. 1997, 'Discrete Ordinates Interpolation Method for Numerical Solution of Two-Dimensional Radiative Transfer Problems,' Numerical Heat Transfer, Part B, Vol. 32, pp. 107-125 https://doi.org/10.1080/10407799708915001
  11. Seo, S.H. and Kim, T.K., 1998, 'Study on interpolation schemes of the discrete ordinates interpolation method for 3-D Radiative Transfer with Nonorthogonal Grids,' ASME Journal of Heat Transfer, Vol. 120, pp. 1091-1094 https://doi.org/10.1115/1.2825897
  12. Kim, T.K., Seo, S.H., Min, D.H. and Son, B.S., 1998, 'Study on Radiation in 3-D Irregular Systems Using the Trapezoidal Rule Approximation on the Transport Equation,' KSME international Journal, Vol. 12, No. 3, pp. 514-523 https://doi.org/10.1007/BF02946367
  13. Hotel, H.C., Sarifim A.F., 1967, Radiative Transfer, McGraw-Hill, New York
  14. Modest, M.F., 1993, 'The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer,' ASME Journal of Heat Transfer, vol 113, pp. 650-656 https://doi.org/10.1115/1.2910614
  15. Goody, R., West, R., Chen, L., Crisp,D., 1989, 'The Correlated-k Method for Radiation Calcalations in Nongomogeneous Atmospheres,' Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 42, pp. 539-550 https://doi.org/10.1016/0022-4073(89)90044-7
  16. Denison, M.K., Webb, B.W., 1993, 'A Spectural Line-Based Weighted-Sum-of-Gray- Gases Model for Arbitrary RTE Solvers,' ASME Journal of Heat Transfer, Vol. 115, pp. 1004-1012 https://doi.org/10.1115/1.2911354
  17. Denison, M.K., Webb, B.W., 1995, 'The Spectral Line-Based Weighted-Sum-of-Gray- Gases Model in Nonisothermal Nonhomogene ous Media,' ASME Journal of Heat Transfer, Vol. 117, pp.359-365 https://doi.org/10.1115/1.2822530
  18. Hartmann, J. M., Levi Di Leon, R., and Taine, J., 1984, 'Line-by-Line and Narrow- Band Statistical Model Calculations for HO,' Journal of Quatitative Spectroscopy and Radiative Transfer, Vol. 32, pp. 119-127 https://doi.org/10.1016/0022-4073(84)90076-1
  19. Taine, J., 1983, 'A Line-by-Line Calculation of Low Resolution Radiative Properties of CO-CO Transparent Nonisothermal Gas Mixtures up to 3000K,' Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 30, No. 4, pp. 371-379 https://doi.org/10.1016/0022-4073(83)90036-5
  20. Goody, R.M., 1952, 'A Statistical Model for Water-Vapor Absortion,' Quart. J. Royal Meteorol. Soc., Vol. 78, pp. 165-169 https://doi.org/10.1002/qj.49707833604
  21. Malkmus, W., 1967, 'Random Lorentz Band Model with Exponetial-tailed $S^ {-1}$ Line-Intensity Distribution Funtion,', J. Opt. Soc. Am., ASME Journal of Heat Transfer Vol. 57, pp. 323-329
  22. D.K. Edwards, A. Balakrishnan, 1973, 'Thermal radiation by combustion gases,' Int. J. Heat Mass Transfer, Vol. 16, pp. 25-40 https://doi.org/10.1016/0017-9310(73)90248-2
  23. Kim, T.K., Park, W.H. and Lee, C.H., 2001, 'Radiative Transfer Solutions for Pure Absorbing Gray and Nongray Gases within a Cubical Enclosure,' KSME International Journal, Vol. 15, No. 6, pp. 752-763
  24. Thurgood, C.P., Pollard, A. and Becker, H.A., 1995, 'The $T_N$ Quadrature Set for the Discrete Ordinates Method,' ASME Journal of Heat Transfer, Vol. 117, pp. 1068-1070 https://doi.org/10.1115/1.2836285
  25. Lockwood, F.C. and Shah, N.G., 1981, 'A New Radiation Solution Method for Incorporation in General Combustion Predictions Procedure', in 18th Symposium on Combustion, The Combustion Institute, Pittsburg, PA, pp. 1405-1414
  26. Zhang, L., Soufiani, A. and Taine, J., 1988, 'Spectral Correlated and Noncorrelated Radiative Transfer in a Fininte Axisymmetric System Containing an Absorbing and Emitting Real Gas-Particle Mixture,' Int. J. of Heat and Mass Transfer, Vol. 18, pp. 2261-2272
  27. Soufiani, A. and Taine, J., 1989, 'Experimental and Theoretical Studies of Combined Iadiative and Convective Transfer in $CO_2 and H_20$ Laminar Flows,' Int. J.of Heat and Mass Transfer, Vol. 32, No. 3, pp. 447-486
  28. Kim, T.K., Menart, J.A. and Lee, H., 1991, 'Nongray Radiative Gas Analyses Using the S-N Technique,' ASME J. of Heat Transfer, Vol. 113, pp. 946-952 https://doi.org/10.1115/1.2911226
  29. Ludwig. D.B., Malkmus W., Reardon J.E. and Thomson A.L., 1973, Handbook of Infrared Radiation form combustion Gases, NASA SP-3080
  30. Soufiani, A. and Taine, J., 1997, 'High temperature gas radiative property parameters of statistical narrow-band for $H_2O$, $CO_2$ and CO, correlated-k model for $H_2O$ and $CO_2$,' Int. J. Heat Mass Transfer, Vol. 4, No. 4, pp. 987-991