• Title/Summary/Keyword: Cylindrical choke

Search Result 5, Processing Time 0.019 seconds

Behaviour of Pulsating Flow in the Jetflow Region through Cylindrical Chokes (원통형 초크의 분류영역에서 맥동유동의 거동)

  • Moh, Y.W.;Yoo, Y.T.;Hong, S.S.;Wee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.47-55
    • /
    • 1995
  • Cylindrical chokes are used widely as components of hydraulic equipments. The dynamic charac teristics between flowrate and pressure drop through the cylindrical chokes were discussed by the frequency characteristics of the chokes. It was assumed no pressure recovery occured at the downstream neighborhood of the choke. The pulsating jetflow from outlet of cylindrical chokes shows very complex behaviours which are quite different from the steady jetflow but it is not clarified quantitatively. In order to utilize the chokes as a flowmeter, it is indispensable to discuss the estimation of the dynamics of pressure drop in the downstream jetflow region of cylindrical chokes. In this experimental study, the dynamic behaviours of the jetflow in the downstream region of cylindrical chokes are investigated precisely by using flow visualization. In the results of experimental sutdy, it is clarified that the retachment length depended on pressure wave is compared with it depended on velocity wave.

  • PDF

Frequency Characteristics of Unsteady Flow of Cylindrical Choke in a Hydraulic Pipe (유압관로에서 원통형 초크의 비정상 유동의 주파수 특성에 관한 연구)

  • Park, S.J.;Yoo, Y.T.;Wee, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.421-434
    • /
    • 1995
  • A new instantaneous flowmeter for hydraulics by means or cylindrical chokes is developed. In this method the instantaneous flowrate through chokes is predicted in real time from measurement of pressure difference on both sides of cylindrical choke. The experimental study for the flowrate of pulsating flow in a pipe is carried out to measure differential pressure drop by using a strain gauge pressure transducer with data acquisition and processing system. A pulsating flow is verified by a visualization method. In the present study, the flow characteristic variables of laminar pulsating flow are investigated analytically and experimentally in a circular pipe. Characteristic parameters of ratio of inertia term to pressure term($\phi_{t.1}$) and ratio of viscous term to pressure term($\phi_{z.1}$) are introduced to describe the flow pattern of laminar pulsating flow.

  • PDF

Behavior and flow characteristics of pulsating flow in the jetflow region through cylindrical chokes (유압관로내 원통형 초크의 분류영역에서 맥동유동의 거동과 유동특성에 관한 연구)

  • ;;Moh, Y. W.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3041-3053
    • /
    • 1995
  • Cylindrical chokes are used widely as components of hydraulic equipments. The dynamic characteristics between flowrate and pressure drop through the cylindrical chokes were discussed by the frequency characteristics of the chokes. It was assumed no pressure recovery occurred near the downstream of the choke. The pulsating jetflow from the outlet of cylindrical chokes show very complex behaviours which are quite different from the steady jet flow but it's not clarified quantitatively. In order to utilize the chokes as a flowmeter, it is indispensable to discuss the estimation of the dynamics of pressure drop in the downstream jetflow region of cylindrical chokes. In this experimental study, it is clarified that the reattachment length depended on pressure wave is compared with it depended on velocity wave. A pulsating flow is verified by visualization method. In the present study, the flow characteristic variables of laminar pulsating flow are investigated analytically and experimentally in a circular pipe. Characteristic parameters of the ratios of inertia(.PHI.$_{t,1}$) and viscous(.PHI.$_{z,1}$) term to pressure term are introduced to describe the flow pattern of laminar pulsating flow. flow.low.

An approach for remote measurement of instantaneous flowrate by making use of hydraulic pipeline dynamics

  • Yokota, Shinichi;Kim, Dotae;Nakano, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.749-754
    • /
    • 1989
  • This paper describes a remote measurement method for estimating unsteady flowrate through a pipeline. By this method, instantaneous flowrate at the remote location along a pipeline (distance L) from flowmeters is measured by making use of dynamic characteristics between two cross sections of the circular pipeline. Using this method, instantaneous flowrate is accurately measured at a location where it is difficult to setup flowmeters. The estimated flowrate waveforms by the method are compared with directly measured ones by cylindrical choke-type instantaneous flowmeter. The validity of the method is established.

  • PDF

Development of double acting brake system integrated counter balance valve (카운터 밸런스 밸브를 내장한 양방향 유압 브레이크 시스템 개발)

  • 김형의;이용범;윤소남;이일영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.962-967
    • /
    • 1991
  • A counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. Dynamic characteristics were analysed by numerical integration using Runge-Kutta method, because the equations in this circuit with counter balance valve contain various nonlinear terms. Propriety of this analysis method is verified by experiment. For the purpose of obtaining fundamental data for preventing instability, this study experimented the effects of the spool taper, spring constant, cylindrical choke. And we developed double acting brake system integrated counter balance valve.

  • PDF