• 제목/요약/키워드: Cylindrical chamber

검색결과 159건 처리시간 0.025초

원통형 구조 전자파 잔향실 내 모드 및 필드 분포 특성 (The Characteristics of Field & Mode Distributions in a Cylindrical Reverberation Chamber)

  • 김정훈;이중근
    • 한국전자파학회논문지
    • /
    • 제14권5호
    • /
    • pp.431-436
    • /
    • 2003
  • 본 논문에서는 전자파 장해 및 복사내성 측정에 사용되는 준전자파 무반사실의 대용 방법으로 활용될 수 있는 전자파 잔향실 중에서 원통형 구조 전자파 잔향실의 전자기장 특성과 모드 분포를 연구하여 원통형 구조 전자파 잔향실의 모드 수 계산법을 제시하였으며, 이것을 사용하여 체적이 동일한 원통형 전자파 잔향실의 모드수를 반지름과 높이 비에 따라 비교 분석하였다. 또한 각각의 체적이 동일한 직사각형, 직각 이등변 삼각형, 원통형의 전자파 잔향실의 필드 균일도를 FDTD(Finite-Difference Time-Domain)를 이용하여 비교 해석하였다.

원통형 확산기를 사용한 전자파 잔향실내의 전기장 분포특성 (The Characteristics of Electric Field Distributions in a Reverberation Chamber using Cylindrical Diffuser)

  • 이용;이중근
    • 대한전자공학회논문지TC
    • /
    • 제45권8호
    • /
    • pp.121-127
    • /
    • 2008
  • 본 논문은 원통형 확산기를 사용한 전자파 잔향실내의 전기장 분포에 관하여 다루었다. $1{\sim}3$ GHz 주파수 대역의 QRD(Quadratic Residue Diffuser)와 원통형 확산기(Cylindrical Diffuser)를 설계 후 각각의 전기장 분포 특성을 비교하였다. 전기장 분포 특성 및 전기장 균일도를 조사하기 위해 FDTD(Finite-Difference Time-Domain) 수치 해석 방법을 사용하였으며, 2 GHz에서 수치해석 결과 원통형 확산기를 사용하였을 경우 기존의 QRD를 사용한 경우에 비하여 표준편차와 공차는 각각 0.11 dB, 0.43 dB 개선되었고, 전기장 세기는 QRD의 36.6 dBmV/m보다 높은 43.2 dBmV/m로 나타났으며, 편파 특성면에서도 QRD보다 개선되었음을 확인 할 수 있었다. 따라서 원통형 확산기를 사용한 전자파 잔향실이 소형 전자기기의 전자파 장해 및 복사 내성 측정을 위한 대용시험 시설로 사용될 수 있음을 확인하였다.

원통형 전리함의 유효 측정점에 관한 실험적 연구 -의료용 전자선을 중심으로- (The Experimental Study of the Effective Point of Measurement for Cylindrical Ion Chamber -For Medical Electron Beams-)

  • 이병용;최은경;장혜숙;홍석민;이명자;전하정
    • 한국의학물리학회지:의학물리
    • /
    • 제2권2호
    • /
    • pp.155-160
    • /
    • 1991
  • 전자선 측정에 사용되는 원통형 전리함의 유효 측정점 깊이에 관한 연구를 하였다. 물팬톰 속에서 Markus 평판형 전리함을 사용하여 여러 에너지(전자선 6MeV 및 9MeV, 12MeV, 20MeV) 방사선의 선량 백분율을 구하고, 이 값을 기준으로 하여 원통형 전리함으로(PW233643 내경 5.5mm 및 PR-05P 내경 4mm, PM30 내경 15mm) 구한 선량 백분율과 비하여 선량 백분율 곡선의 변위를 유효 측정점으로 계산하였다. 이 결과 전자선에서는 0.4~0.6r 만큼, $^{60}$Co 감마선에서는 0.3~0.7r 만큼 표면쪽으로 이동한 값을 측정점으로 정하여야 하는 것을 알았다.

  • PDF

소형 디퓨저의 최적화 설계 (Optimization Design of Compact Diffuser)

  • 이영태
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.163-167
    • /
    • 2022
  • In this paper, an optimization design method of a diffuser using Bernoulli's theorem was reviewed. The aspect ratio of the cylindrical diffuser chamber and the diameter ratio of the air inlet and outlet were used as design parameters. For the optimal design of the cylindrical diffuser chamber, the air flow inside the chamber was simulated using ANSYS while changing the aspect ratio of the chamber. In order to confirm the simulation results, the diffuser manufactured using the laser processing machine was measured. Through ANSYS simulation and measurement, it was found that the optimal design condition was when the aspect ratio (chamber height/radius) of the diffuser chamber was 1/2 and the diameter ratio of the air inlet and outlet was also 1/2.

급 확대부를 갖는 실린더 챔버 내부 유동에 관한 LES 난류모델의 평가 (Evaluation of turbulent SGS model for large eddy simulation of turbulent flow inside a sudden expansion cylindrical chamber)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.423-433
    • /
    • 2004
  • A large eddy simulation (LES) is performed for turbulent flow in a combustion device. The combustion device is simplified as a cylindrical chamber with sudden expansion. A flame holder is attached inside a cylindrical chamber in order to promote turbulent mixing and to accommodate flame stability. The turbulent sub-grid scale models are applied and validated. Emphasis is placed on the evaluation of turbulent model for the LES of complex geometry. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The calculated Reynolds number is 5000 based on the bulk velocity and the diameter of inlet pipe. The predicted turbulent statistics are evaluated by comparing with the LDV measurement data. The Smagorinsky model coefficients are estimated and the utility of dynamic SGS models are confirmed in the LES of complex geometry.

Calibration of $^{192}Ir$ HDR Brachytherapy Source in Air and in a Cylindrical Phantom

  • Djarwani S. Soejoko;I, Arief-Riva'
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.23-27
    • /
    • 2002
  • Two $^{192}$ Ir HDR brachytherapy sources were calibrated with a Farmer ionization chamber in air method and in a PMMA cylindrical phantom. The calibration air method used ionization chamber with buildup cap, and 8 variation distances for center-to-center of the source to chamber. In the optimum distance the measured activity, especially for the high activity source, deviation was 0.3% from the activity provided by manufacturer. Calibration with a PMMA cylindrical phantom was less sensitive, and suitable for quick check method with accuracy less than 10%.

  • PDF

Ultrasound Backscattering from Erythrocyte Aggregation of Human, Horse and Rat Blood under Rotational Flow in a Cylindrical Chamber

  • Nam, Kweon-Ho;Paeng, Dong-Guk;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권4E호
    • /
    • pp.159-165
    • /
    • 2006
  • Human, horse and rat bloods in a cylindrical chamber where flow was controlled by a stirring magnet were used for studying red blood cell aggregation. Ultrasound backscattered powers from blood were obtained from the backscattered signals measured by a 5 MHz focused transducer in a pulse-echo setup. The experimental results showed the differences in red blood cell (RBC) aggregation tendency among the three mammalian species with an order of horse > human > rat. The ultrasound backscattered power decreased with stirring speed in human and horse blood, but no variations were observed in rat blood. Sudden flow stoppage led to the slow increase of the backscattered power for human and horse blood. There was no self-aggregation tendency in rat blood. The enveloped echo images showed the spatial and temporal variations of RBC aggregations in the cylindrical chamber. These observations from the different mammalian species may give a better understanding of the mechanism of RBC aggregation.

Use of Cylindrical Chambers as Substitutes for Parallel-Plate Chambers in Low-Energy Electron Dosimetry

  • Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Cho, Jin Dong;Park, Jong Min;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2018
  • Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.

Numerical Visualization of Fluid Flow and Filtration Efficiency in Centrifugal Oil Purifier

  • Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.84-91
    • /
    • 2010
  • The centrifugal oil purifier is used in ships for purifying the engine lubrication oil. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. The dust particles in the oil are separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are adsorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviours of particles in this centrifugal oil purifier have been investigated numerically and the filtration efficiencies have been evaluated. For the calculations, a commercial code has been used and the SST k-${\omega}$ turbulence model has been adopted. The MRF (Multiple Reference Frame) method has been introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies have been evaluated. It has been verified that the filtration efficiency is increased with the increments of the particle size, the particle density and the rotating speed of the cylindrical chamber.

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.