• Title/Summary/Keyword: Cylindrical Specimen

Search Result 171, Processing Time 0.024 seconds

Size Effect on Axial Compressive Strength of Notched Concrete Specimens (노치가 있는 콘크리트 실험체의 축압축 강도에 대한 크기효과)

  • 이성태;김봉준;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.99-108
    • /
    • 2000
  • The size effect on axial compressive strength in notched concrete specimens was experimentally investigated. Based on the concept of the fracture mechanics and size effect law, theoretical studies for axial compressive failure of concrete were reviewed, and two failure modes of concrete specimens under compression were discussed. In this study, experiments of axial compressive failure, which is one of the two failure modes, was carried out by using cylindrical specimens. Adequate notch length was taken from the experimental result of strength variation based on the notch length. And, by taking various sizes of specimens the size effect on axial compressive strength of concrete was investigated. Also, model equations were suggested by modified size effect law (MSEL). The test results show that size effect appears conspicuously for all series of specimens. Additionally, the effect of initial notch length on axial compressive strength was also apparent.

Analysis for Cokes Fracture Behavior using Discrete Element Method (이산요소법을 이용한 코크스 분화 거동 해석)

  • You, Soo-Hyun;Park, Junyoung
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

Prediction of Birefringence Distribution in Cylindrical Glass Compression Test (유리 압축 실험에서의 복굴절 분포 예측)

  • Lee J.;Na J. W,;Rhim S.H.;Oh S.I.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.509-514
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The error of simulation results between experimental results in the birefringence value at the center of glass specimen is $4.2\%$, and the error in the maximum radius of deformed glass specimen is $1.2\%$. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

A Study on Free Vibration of Steel and Composite Cylindrical Shells with an Oblique Angle (경사단을 갖는 Steel 및 복합재료 원통쉘의 자유진동 특성에 관한 연구)

  • Lee, Jang-Won;Choi, Young-Jin;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.928-933
    • /
    • 2004
  • The vibration characteristic is a primary design factor. The cylindrical shells are used as a primary components of complex structure. also, The cylindrical shells have oblique angle. In this study, The vibrational characteristics of steel and plain wave GFRP cylindrical shell with an oblique end are given by experimental and finite element method. To be find characteristic of the oblique end, the mass of the cylindrical shell is maintained. Natural frequency and mode shapes of isotropic and plain weave composite shells are obtained by modal test. The results are compared with those of the finite element method. The simply supported boundary conditions with bolts along the circumferential direction of the GFRP shell are well achieved. Also, The clamped boundary conditions is applied to the steel specimen. Those are shown to agree well with the analytical results and finite element analysis results.

  • PDF

Observation of Castability of Dental DLP 3D Printer Materials (치과용 DLP 3D Printer 가공체의 주조성 관찰)

  • Song, Joon-boo;Park, Yu-jin;Choi, Sung-min
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.255-262
    • /
    • 2019
  • Purpose: Recently, the production technology of dental prosthesis using 3D Printer workpeices has been developed. However, the lack of information on the work processes and casting techniques of materials for 3D printing casting is expected to require research. Therefore, in this study, we intend to cast a Dental DLP 3D Printer workpiece, which is being commercialized, to identify its appearance and internal clearance, and to observe its castability. Methods: Castability of the 3D Printer workpiece was evaluated. The specimen is prepared in a cylindrical shape and in a 1 mm thick coping shape. The control specimen is made of wax and the experimental specimen is made of resin using two types of 3D printers. After casting, the appearance of the casting body was observed and the internal clearance of the coping was measured. Results: RP1 and RP2, cylindrical specimens, were partially cast or fin. When coping-type specimens were measured before casting, the internal clearance of PE2 was more accurate than that of PC and PE1. When coping-type specimens were measured after casting, CE1 was the most accurate in occlusal clearance and CE2n was the most accurate in axial clearance. Conclusion: 1. Exterior observations of the casting body indicated casting defects and fins. 2. Internal clearance observations show that the occlusal clearance of the castings is larger after casting, and the axial clearance of the castings is smaller after casting. 3. It is judged that the RP2 specimen is more likely to be applied for casting than the RP1 specimen.

Mechanical Properties of Apple and Pear (사과 및 배의 기계적 특성)

  • 김만수;정현모;박종민;이영희
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.243-252
    • /
    • 1999
  • The damage caused in the processes and distributions after harvesting the fruits and vegetables is attributed to the mechanical factors such as compressive and impact forces. Compression tests of biological materials provide an objective method for determining the apparent modulus of elasticity and mechanical properties which are significant in quality evaluation and control, and them maximum allowable compressive forces for minimizing mechanical damage. This study was performed to determine the mechanical properties of apple and pear, and to investigate effect of specimen shapes on the mechanical properties of them. A computer program was developed for measuring the mechanical properties and analyzing the data obtained from the measurement. Compression tests on the sample were performed with then replications at each treatment and at 25 mm/min loading rate. Mechanical properties of the apple was generally shown the higher value than those of the pear, and it was though that data obtained form the cylindrical specimen removed from the sample was more reliable than from the specimen cut in half.

  • PDF

Adoption of the large scale free-free resonant column test (대형 공진주 시험 장비의 적용)

  • Park, In-Beom;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.626-633
    • /
    • 2009
  • A large scale resonant column testing equipment is under development. The would-be equipment is aiming to test 150mm-diameter specimens, which can contain as large a grain size as 25mm. Such a large specimen is hardly excitated with the existing fixed-free end condition because the torsional force cannot be effectively coupled to the specimen. The specimen will be rather resonated with free-free condition and the scheme is implemented with a rotational bearing installed between coil-magnet exciter and base pedestal. Presently the equipment was assembled and is under calibration with a cylindrical brass specimen.

  • PDF

Light Resistance of Natural Dye-colored Veneer and Clear Coated Cylindrical Laminated Veneer Lumber (천연염색 단판 및 투명 도장처리 원통형 단판적층재의 내변퇴색성)

  • Kim, Jong-In;Suh, Jin-Suk;Hwang, Sung-Wook;Park, Ryeong-Jae;Park, Sang-Bum
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.4
    • /
    • pp.407-414
    • /
    • 2012
  • In order to develop the end use of cylindrical laminated veneer lumber (LVL) such as wooden crafts, the light resistance properties of natural dye-colored and finished cylindrical LVL was investigated. The study results were as follows; The cross section of LVL showed the higher light resistance than its tangential section, and the light resistance also increased with surface coated. On the other hand, LVL specimen were colored by 9 natural dyes of amur cork-tree etc., and the natural and apparent hue harmonized with wood was found after coating and light resistance test. Particularly, The dyes extracted from amur cork-tree, persimon and sappan wood showed orange color, reddish brown and red color respectively, giving an accenting effect to original wood color.

  • PDF

Theoretical explanation of rock splitting based on the micromechanical method

  • Huang, Houxu;Li, Jie;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.225-231
    • /
    • 2018
  • In this paper, in order to explain the splitting of cylindrical rock specimen under uniaxial loading, cracks in cylindrical rock specimen are divided into two kinds, the longitudinal crack and the slanting crack. Mechanical behavior of the rock is described by elastic-brittle-plastic model and splitting is assumed to suddenly occur when the uniaxial compressive strength is reached. Expression of the stresses induced by the longitudinal crack in direction perpendicular to the major axis of the crack is deduced by using the Maxwell model. Results show that the induced stress is tensile and can be greater than the tensile strength even before the uniaxial compressive strength is reached. By using the Inglis's formula and simplifying the cracks as slender ellipse, the above conclusions that drawn by using the Maxwell model are confirmed. Compared to shearing fracture, energy consumption of splitting seems to be less, and splitting is most likely to occur when the uniaxial loading is great and quick. Besides, explaining the rock core disking occurred under the fast axial unloading by using the Maxwell model may be helpful for understanding that rock core disking is fundamentally a tensile failure phenomenon.

INVESTIGATION OF ENDOSCOPE CAPSULE DESIGN ON THE FRICTIONAL RESISTANCE INSIDE THE INTESTINE

  • Baek, N.K.;Sung, I.H.;Kim, J.S.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.367-368
    • /
    • 2002
  • The design of capsule body for self-propelled endoscope is important from the frictional resistance point of view. The capsule should be able to overcome the frictional resistance in order to move along the intestine. The motivation of this work was to gain a better understanding of the capsule body design on the frictional resistance of the capsule inside an intestine. A special experimental set-up was built to measure the frictional resistance as the capsule was being pulled inside the pig intestine specimen. Tests were performed with open and closed intestine specimens. Experimental data showed that smooth cylindrical capsule geometry resulted in the least frictional resistance. The resistance inside the closed intestine specimen was about four times higher than that of the open specimen. It is expected that the results of this work will be used to design the optimum propulsion system for the microendoscope.

  • PDF