• 제목/요약/키워드: Cylindrical Shells

검색결과 318건 처리시간 0.018초

축압추하중을 받는 복합재료원통셸의 좌굴 (Buckling of Laminated Composite Cylindrical Shells under Axial Compression)

  • 원종진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.112-116
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

원판이 결합된 외팔 원통셸의 고유진동 특성 (Free Vibration Analysis of the Cantilevered Circular Cylindrical Shells Combined with Circular Plates at Axial Positions)

  • 임정식;이영신;손동성
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.331-345
    • /
    • 1997
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial position(s) was completed and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of the plate and the shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis. The results shows good agreement with those of ANSYS and test results in frequencies and mode shapes. The method developed herein is likely to be used for the analysis of the free vibration of the clamped-free circular cylindrical shells with any kinds of lids such as hollow circular plates, conical shells, spherical shells, or semi-spherical shells.

  • PDF

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Experimental investigation on the buckling of thin cylindrical shells with two-stepwise variable thickness under external pressure

  • Aghajari, Sirous;Showkati, Hossein;Abedi, Karim
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.849-860
    • /
    • 2011
  • The buckling capacity of the cylindrical shells depends on two geometric ratios of L/R and R/t. However the effect of thickness variation on the behavior of the shells is more complicated and the buckling strength of them is sensitive to the magnitude and shape of geometric imperfections. In this paper the effects of thickness variation and geometric imperfections on the buckling and postbuckling behavior of cylindrical shells are experimentally investigated. The obtained results are presented under the effect of uniform lateral pressure. It is found in this investigation that the buckling mode can be generated in the whole length of the shell, if the thickness variation is low.

Buckling of sandwich cylindrical shells under axial loading

  • Ohga, Mitao;Wijenayaka, Aruna Sanjeewa;Croll, James G.A.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.1-15
    • /
    • 2005
  • Important characteristics of the previously proposed reduced stiffness method and a summery of its design curves for the buckling of the axially loaded sandwich cylindrical shells is presented. Comparison of the lower bound obtained with FEM analysis with that from the reduced stiffness analysis shows that the proposed reduced stiffness method can provide safe lower bounds for the buckling of geometrically imperfect, axially loaded sandwich cylindrical shells. One of the attractive features of the reduced stiffness elastic lower bound analysis is that it provides safe estimates of buckling loads that do not depend on the specification of the precise magnitude of the imperfection spectra. As a result, designers can readily apply this method without being worried about possible geometrical imperfections that might be generated during fabrication and construction of sandwich cylindrical shells.

Axial buckling response of fiber metal laminate circular cylindrical shells

  • Bidgoli, Ali M. Moniri;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.45-63
    • /
    • 2016
  • Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which consist of thin metal sheets bonded together with alternating unidirectional fiber layers. In this study, the buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both analytical and finite element approaches. The governing equations are derived based on the first-order shear deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are compared with the available results. Afterwards, the effects of FML parameters such as metal volume fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this paper hopefully provide a useful guideline for engineers to design an efficient and economical structure.

Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment

  • Dong, K.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.395-410
    • /
    • 2006
  • This paper reports the result of an investigation into wave propagation in orthotropic laminated piezoelectric cylindrical shells in hydrothermal environment. A dynamic model of laminated piezoelectric cylindrical shell is derived based on Cooper-Naghdi shell theory considering the effects of transverse shear and rotary inertia. The wave characteristics curves are obtained by solving an eigenvalue problem. The effects of layer numbers, thickness of piezoelectric layers, thermal loads and humid loads on the wave characteristics curves are discussed through numerical results. The solving method presented in the paper is validated by the solution of a classical elastic shell non-containing the effects of transverse shear and rotary inertia. The new features of the wave propagation in laminated piezoelectric cylindrical shells with various laminated material, layer numbers and thickness in hydrothermal environment and some meaningful and interesting results in this paper are helpful for the application and the design of the ultrasonic inspection techniques and structural health monitoring.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.