• Title/Summary/Keyword: Cylindrical Axis

Search Result 147, Processing Time 0.029 seconds

Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target (원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화)

  • Shin, Beom-Ki;Lee, Tae-Il;Park, Kang-Il;Ahn, Kyoung-Jun;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.47-50
    • /
    • 2010
  • Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

Comparison of Electron Beam Dosimetries by Means of Several Kinds of Dosimeters (수종의 측정기에 의한 전자선의 선량 측정의 비교)

  • Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.93-100
    • /
    • 1989
  • Several combinations of measuring devices and phantoms were studied to measure electron beams. Silicon Pmt junction diode was used to find the dependence of depth dose profile on field size on axis of electron beam Depths of 50, 80 and $90\%$ doses increased with the field size for small fields. For some larger fields, they were nearly constant. The smallest of field sizes over which the parameters were constant was enlarged with increase of the energy of electron beams. Depth dose distributions on axis of electron beam of $10\times10cm^2$ field were studied with several combinations of measuring devices and phantoms. Cylindrical ion chamber could not be used for measurement of surface dose, and was not convenient for measurement of near surface region of 6MeV electron. With some exceptions, parameters agreed well with those studied by different devices and phantoms. Surface dose in some energies showed $4\%$ difference between maximum and minimum. For 18MeV, depths of 80 and $90\%$ doses were considerably shallower by film than by others. Parallel-plate ion chamber with polystyrene phamtom and silicon PN junction would be recommended for measurement of central axis depth dose of electron beams with considerably large field size. It is desirable not to use cylindrical ion chamber for the purpose of measurement of surface dose or near surface region for lower energy electron beam. It is questionable that film would be recommended for measurement of dose distribution of electron with high energy like as 18MeV.

  • PDF

Laser Scanning Technology for Ultrasonic Horn Location Compensation to Modify Nano-size Grain (나노계면 형성을 위한 초음파 진동자 위치보정을 위한 레이저 스캐닝 기술)

  • Kim, Kyugnhan;Lee, Jaehoon;Kim, Hyunse;Park, Jongkweon;Yoon, Kwangho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1121-1126
    • /
    • 2014
  • To compensate location error of ultrasonic horn, the laser scanning system based on the galvanometer scanner is developed. It consists of the 3-Axis linear stage and the 2-Axis galvanometer scanner. To measure surface shape of three-dimensional free form surface, the dynamic focusing unit is adopted, which can maintain consistent focal plane. With combining the linear stage and the galvanometer scanner, the scanning area is enlarged. The scanning CAD system is developed by stage motion teaching and NURBS method. The laser scanning system is tested by marking experiment with the semi-cylindrical sample. Scanning accuracy is investigated by measured laser marked line width with various scanning speed.

Cavitating Flow in Circular and Elliptical Nozzles (원형 노즐과 타원형 노즐에서 발생되는 캐비테이션 유동)

  • Ku, Kun-Woo;Hong, Jung-Goo;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1005-1012
    • /
    • 2011
  • The purpose of this study was to investigate the internal nozzle flow and cavitation characteristics numerically in both circular and elliptical nozzles. The program FLUENT 6.2 was used to perform the numerical simulation of the cavitating flow in the nozzles. A comparison was made between the cavitation shapes predicted numerically and those found experimentally in order to validate the numerical solution. This study showed that the cavitation in the circular nozzle had a cylindrical shape that was symmetrical with the nozzle axis. However, the cavitation in the elliptical nozzles had a horseshoe-like shape. In addition, the radial velocity distribution varied between the major and the minor axis planes when the working fluid was flowing into the inlet.

The Measurement of Femoral Neck Anteversion by 3D Modeling of Femoral Major Axes (대퇴골 주요축의 3차원 모델링에 의한 전염각의 측정)

  • Kim, Jun-Sik;Kim, Seon-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 1998
  • The accurate measurement of the femoral anteversion is important for the derotational osteotomy. To estimate femoral anteversion, following three major parameters are required; the neck axis, the long axis, and the knee axis. Conventional methods on the basis of 2D images are ambiguous to determine these major axes. As the femur has a complex 3 dimensional structure, the 3 dimensional model should be applied for accurate and reliable measurement of femoral anteversion. In this thesis, we model femur and define three parameters. The neck axis is defined from the femoral head and neck model. The long axis is determined from the cylindrical model of the femoral shaft. The knee axis is also determined from the model of femoral condyles. According to the definition of the femoral anteversion, the femoral anteversion is efficiently estimated from these models. 20 specimens were tested by the conventional 2D imaging method and 3D imaging method witch was developed by authors and the new 3D modeling method. The study provides accurate, fast and human factor free measurement for femoral anteversion.

  • PDF

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

Design Optimization and Performance of High Voltage Composite Bushing

  • Jo, Han-Gu;Gang, Hyeong-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.234-234
    • /
    • 2009
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF

Application of the impact drive principle to the alignment of workpieces on rotating supports

  • Bergander, Arvid;Yamagata, Yutaka;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.315-318
    • /
    • 1996
  • In this paper a new positioning method for cylindrical work pieces on rotating supports is studied. A work piece on a rotating axis is positioned by an impact drive mechanism (IDM) whose driving parameters are steadily updated by observing the object movement. The application of this actuator and the use of a multi-functional PC board for all necessary input and output operations such as e.g. data acquisition or wave form generation allow an alignment with a precision of less than 1.mu.m in a relatively short time and at low cost compared to conventional methods.

  • PDF

Effect of Tool Approaching Path on He Shape of Cylindrically Milled Parts (공구 접근 경로가 원통형상의 밀링가공물에 미치는 영향)

  • Kim, Kang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.45-51
    • /
    • 2003
  • Milling process has beer used in aircraft, auto-component and mold industries widely. They need more accurate and precise parts to improve the performance and quality of their products. So, the geometrical form accuracy of the workpiece surface generated by this process is getting more and more important. Generally, the form accuracy is affected by machine conditions, cutting conditions, tool geometry, tool deflection by cutting force and tool path md so on. Even though they are controlled as perfect conditions, it is easily found that there is a line along the axis of a cylindrically milled part. It is presumed that the tool approaching causes this error on milled surface. Thus, the study for investigating the effect of the tool approaching path on the cylindrical surface geometry of the end-milled part is carried out.

An Omnidirectional Receiver for Visible Light Communication Using a Flexible Solar Cell (플렉시블 솔라셀을 이용한 전 방위 가시광 수신기)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • In this paper, we newly developed an omnidirectional receiver for visible light communication (VLC). The omnidirectional receiver was composed of a flexible solar cell attached on a cylindrical surface with its axis in vertical direction. The solar cell surface was symmetrical and showed an almost uniform receiving pattern in a horizontal plane. The maximum difference in a receiving pattern was within 7% of its peak value in a horizontal plane. This configuration is very easy to fabricate and useful in constructing wireless sensor networks in which one receiver needs to detect multiple LED signals in different directions.