• Title/Summary/Keyword: Cylinders

Search Result 1,177, Processing Time 0.022 seconds

Combustion Characteristics of HCCI Engine Fueled DME and Natural Gas(Unbalance of Cylinder-to-Cylinder and Effect of EGR) (DME/천연가스 HCCI 기관의 연소특성(기통 간 불균형과 EGR의 영향))

  • Jung, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • HCCI engines fueled DME and natural gas have been studied on single-cylinder engine due to availability of reducing on $NO_X$ and PM simultaneously without deteriorating into high thermal efficiency, and thus it is clarified that higher maximum engine load is achieved as DME equivalence is smaller. In this study, combustion tests were accomplished on multi-cylinder engine for practical use of it. When minimum DME equivalence achieved maximum engine load on single-cylinder engine was applied to 4-cylinders engine, there was in unstable running condition that engine revolution fluctuated greatly and cyclically. It is the reason what misfire occurred intermittently with one the same as minimum DME equivalence on single-cylinder due to increase in energy for ignition at No. 1 cylinder with lower cylinder liner temperature. Maximum engine load was achieved by adopting EGR, though it decreased because of knocking at smaller engine load than single-cylinder due to increase in minimum DME equivalence.

A study on the elastic-plastic analysis and fracture behavior of pressure vessel (내외압을 받는 압력용기의 탄소성 해석과 파괴거동에 대한 고찰)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1988
  • This paper reports on the elatic-plastic analysis and fracture behavior of cylinder with outer surface crack which is under external or internal pressure. For the studuty of crack length effects in cylinder, ratios of crack lengths to finite thickness (a/t) are dertermined 0.3, 0.4, 0.5. For the study of curvature effects in cylinders, ratios of mean diameter to finite thicknees (Rm/t) are determined 10.0, 15.0, 20.0. Analysis is conduceted using the theory of fracture mechanics and two dimensional finite element solution assuming the axi-symmetrical plane strain conditon. Main results of this study are as follows. 1) It is known from this paper that elastic-plastic strain is initiated near crack tip and enlarged between crack tip and inner side of cylinder. 2) $K_{1}$ of cylinder under external or internal pressure is evaluated memebrane stress .root..pi.* crack length. The results of this study are inclined to Lomacky's results and Kobayshi's result. 3) Distribution of stress near crack tip is looked higher than of other zone, as crack length of equal model is longer, and as diameter of cylinder is longer. 4) When other conditions are equal, displacemenet near crack tip is looked duller, as length is longer.

  • PDF

Main Engine Upper Structural Vibration Phenomenon due to 2nd Node Torsional Vibration and Countermeasures on the Marine Propulsion System (선박 추진축계의 2절 비틀림 진동에 기인한 주 기관 상부 구조 진동현상과 방진 대책)

  • Lee, Donchool;Kim, Junseong;Kim, Jinhee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.549-554
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to $2^{nd}$ node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the $2^{nd}$ node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-82RT-flex 8 cylinder engine and 11S90S-ME 11 cylinder engine for a container ship was used as research model.

  • PDF

Control effects of the flow and the aerodynamic force around the downstream cylinder by a spinning upstream cylinder in uniform flow (균일류의 회전원주 제어에 의한 유동 및 공력 제어효과에 관한 연구)

  • Bu, Jeong-Suk;Yang, Jong-Pil;Kim, Chang-Su;Sin, Yeong-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.346-359
    • /
    • 1998
  • The aerodynamic forces and wake structure of the non-rotating downstream circular cylinder, of which the uniform freestream flow is interfered with another spinning upstream cylinder having the same diameter that is located upstream in a line have been investigated experimentally. When the spin rate of the downstream cylinder defined as the ratio of tangential surface velocity of the spinning cylinder to the freestream velocity increases gradually from zero to 1.4, the change of surface pressure distribution, aerodynamic forces of the non-rotating downstream cylinder were measured in case of several distance ratios of 1.5, 3.0, and 4.5 defined as the ratio of distance between the centers of two cylinders to the diameter. The wake flow patterns behind the cylinder were also investigated in each case. From the present experiments, it has been found that the spin rate significantly influences the aerodynamic forces and near-wake flow phenomena of the downstream cylinder in such a way that the drag increases as the spin rate and distance ratio increase and the wake width increases as the distance ratio increases.

Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows (횡단공기류에서의 고압 가솔린 분사시 연료분무 특성)

  • 이석환;최재준;김성수;이상용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

Torsional modal testing of a non-ferromagnetic shaft by magnetostrictive patch transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1159-1164
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy job to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

  • PDF

A Study on the Development of Bio-gas Engine Using Livestock Manure - Fundamental Design and Experimental Analysis on the Performance - (축분을 이용한 바이오가스 엔진 개발 - 기초설계 및 성능분석 -)

  • Paek Y.;Kim Y. J.;Kang G. C.;Ryou Y. S.;Cho K. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.354-359
    • /
    • 2005
  • This is a fundamental study to develop a bio-gas utilization technology using livestock manure. Especially, this study was carried out to develop an engine using bio-gas. A bio-gas engine was designed and manufactured by modification of a diesel engine of 3 cylinders powering 13.31 kW/2800 rpm, changing the fuel supplying system fit for bio-gas. The result showed that, when the Air/Fuel ratio was controlled with fixed spark timing, the power of biogas-fueled engine is about $10.6{\~}14.6\%$ lower then that of LNG-fueled engine because of low volumetric efficiency. The engine output and torque was $11.85{\~}13.3$ kW, $39.5{\~}40.8\;N{\cdot}m$, respectively at the engine speed of 2600 rpm. Bio-gas consumption rate was 260.20 g/kW/hr, 315.20 g/kW/hr in engine speed or 1000 rpm, 2800 rpm, respectively.

Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(I) -Control Systems for Engine Speed and Transmission Ratio- (트랙터의 기관속도(機關速度) 및 변속비(變速比)의 자동제어(自動制御)에 관(關)한 연구(硏究)(I) -기관속도(機關速度) 및 변속비(變速比) 제어(制御) 시스템-)

  • Kang, S.B.;Ryu, K.H.;Oh, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 1993
  • Fuel efficiency in tractor operations dep6nds on the selection of transmission gears and upon the engine being operated at or near maximum torque much of time. The objective of this study was to develop automatic control systems for tractor transmission ratio and governor setting so that the engine is operated at or near maximum torque as much of time as possible. An indoor test unit, which can be used to simulate tractor operation, was built in order to investigate the system design parameters and test the performance of the control system designed. The test-unit consists of engine, gear-type transmission, dynamometer, and control systems for transmission ratio and engine speed. Governor setting lever was controlled by a step motor, and the clutch and transmission levers were controlled by hydraulic cylinders and solenoid valves. The control systems showed good time responses which are assumed to be suitable for optimal tractor operation. The time required for shifting gears from clutch disengagement to engagement was about 1 second, which is almost the same as that for manual shift. And the settling time for engine speed control system was about 5 to 6 seconds.

  • PDF

Investigation of the Vortex Shedding with the Shear Building (전단건물을 이용한 와류발산현상 파악)

  • Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1785-1790
    • /
    • 2010
  • To study the vortex induced vibrations the wind tunnel and the two story shear building were designed and built. The wind tunnel was designed to generate the wind speed up to 24 m/s, and the building was designed to have the two lowest natural frequencies within the range of the vortex frequencies generated by the wind tunnel. The resonance behaviors by the locking-on phenomena were observed during the wind tunnel tests of the shear building with the cylinder attached. From the locking-on phenomena observed it is found that the effects of the amplitudes and the frequencies of the cylinders should be considered on the forces generated by the vortex shedding.

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF