• Title/Summary/Keyword: Cylinder Speed

Search Result 747, Processing Time 0.027 seconds

Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method (경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석)

  • 김은태;최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

Development of Threshing Cylinder for Reduction of Soybean Seed Damage (콩 탈곡손상 절감을 위한 콩 탈곡통 개발)

  • Cho, Yong-Jin;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.380-386
    • /
    • 2010
  • This study was carried out to develop soybean thresher which is able to reduce the soybean threshing damage in comparison to the conventional thresher. A threshing cylinder with different diameter of 480 and 384 mm at each end and with one quarter disc pegs of 60 mm radius was developed and attached to the prototype thresher. A conventional thresher which has a threshing cylinder with $\wedge$ type threshing pegs and same diameter of 480 mm at each end was used for comparative test. A series of comparative performance test was conducted using sun-yu and chung-ja soybean. For sun-yu bean, which is white and usually used for soybean paste and soy sauce, the ratio of damaged beans of prototype ranged 2-3% for 330-360 rpm which is recommended cylinder speed by manufacturer. The ratio of damaged beans of conventional thresher was 3-4% for the same range of cylinder speed. chung-ja beans with black color usually shows high damaged ratio compared with white beans, thus cylinder speed of 250-300 rpm is recommended by manufacturer to reduce the damaged ratio. For this range of cylinder speed, the damaged ratio of prototype was 1.3-1.4% and it was 2.7-6.1% for the conventional thresher. Thus prototype is able to reduce the damaged ratio 1.5-5.0% compared with conventional thresher. Prototype shows 0.4% of unthreshed soybean ratio for sun-yu bean in the optimum range of cylinder speed and it was 0.87% for the conventional thresher. For chung-ja bean, the ratio of unthreshed soybean was almost same for both prototype and conventional thresher with the value of 4.0%. The reason of high unthreshed soybean ratio for chung-ja bean compared sun-yu bean is due to the high seed moisture content of 29.11% which is much higher than that of the recommended.

Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 배종욱
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

Propagation Speed of Torsional Elastic Waves In a Cylinder with a Periodically Corrugated Outer Surface (외면이 주기적으로 울퉁불퉁한 실린더에서 비틂 탄성파의 전파속도)

  • 김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.54-60
    • /
    • 1999
  • The paper describes a theoretical study on the speed of the torsional elastic waves propagating in a circular cylinder whose outer radius varies periodically as a harmonic function of the axial coordinate. The approximate solution for the phase speed has been obtained using the perturbation technique for sinusoidal modulation of small amplitude. It is shown that the wave speed in the cylinder with a corrugated outer surface is less than that in a smooth cylinder by the square of the amplitude of the surface perturbation. This theoretical prediction agrees reasonably with an experimental observation reported earlier. It is also shown that the wave speed reduction due to the surface corrugation becomes larger for a thinner cylinder and for a bigger density of corrugation.

  • PDF

An Experimental Study on the Frication Forces in Low Friction and High Speed Pneumatic Cylinders (저마찰.고속 공압실린더의 마찰특성 연구)

  • 김동수;김광영;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.476-479
    • /
    • 1997
  • A Knowledge of friction force in pneumatic cylinders makes it possible to improve cylinder description during simulation and to asses performance under changing operating conditions more accurately. Such knowledge is particularly useful, for example, when modeling continuous pneumatic positioning systems or predicting the operating conditions under which stick slip may occur, as well as in establishing preventive maintenance procedures for pneumatic cylinders. Friction force depends on a number of factors, including operating pressure, seal running speed on the cylinder barrel and rod, barrel material and surface roughness, seal dimensions and profile, seal material, lubrication conditions, cylinder distortion during assembly, and the operating temperature of cylinder components. This paper shows a system for measuring the friction force caused by a seal used in pneumatic cylinders. Results of experimental tests show that seal friction forces for grease lubricated service are clearly dependent on speed and pressure and are les sensitivity to other parameter. i.e., barrel material and roughness, seal material, and profile.

  • PDF

Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders (고속 공기압 실린더 내장용 쿠션기구의 특성 비교)

  • Kim, Dotae;Zhang, Zhong Jie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

Characteristics of Plane Impinging Jets(2)- Cylinder-tone - (평면 충돌제트의 불안정특성(2)-원통음-)

  • Kwon, Young-Pil;Kim, Wook;Lee, Joo-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • The objective of this study is to obtain the instability characteristics of the plane jet impinging on circular cylinder associated with the cylinder-tone. It is found that the characteristics depends upon he ratio of the cylinder diameter to the nozzle width, D/h, and the jet velocity. When the ratio is oderate the cylinder-tone is similar to the edge-tone. With increase of the ratio, its characteristics ecomes similar to that of the plate-tone in which only the high-speed tone associated with turbulent et is generated. When D/h 〈1. the frequency range, especially the lower limit of frequency, is ignificantly influenced by the cylinder diameter. At around D/h = 1/2, while low speed tones are nduced with the antisymmetric mode of instability and affected by the vortex shedding from the ylinder, high-speed tones are generated, at first, with the symmetric mode of instability. and then, ith antisymmetric mode, as the jet velocity increases.

Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump (유압펌프용 실린더 블록의 윤활 및 동특성 해석)

  • 안성용;임윤철;홍예선
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.209-217
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.