• Title/Summary/Keyword: Cylinder Compression Test

Search Result 70, Processing Time 0.023 seconds

A Study on the Determination of Material Property by Cylinder Compression Test (원기둥 압축 시험을 통한 소재의 물성치 평가에 관한 연구)

  • Cha, Do-Sung;Choi, Hong-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1049-1061
    • /
    • 2006
  • In the study, the flow stress of material and friction condition were determined by using the cylinder compression test and numerical method. We proposed the flow stress equation including the initial yield strength to predict it from the upper bound method. The upper bound technique uses the velocity field which includes two unknowns to effectively express bulging. Also, inverse engineering technique uses the object function to minimize area enclosed by load-stroke curve. The friction factor is determined from the radius of curvature of the barrel by cylinder compression test. Flow stress and initial yield strength predicted from the above techniques are verified through the finite element simulation.

Deformation characteristics at the contact boundary in cylinder compression process (원기둥 압축 공정에서 접촉 경계면의 변형 특성)

  • Min, Kyung-Ho;Ko, Byung-Du;Lee, Ha-Seong
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.30-36
    • /
    • 2014
  • In this study, surface deformation patterns have been investigated by the rigid-plastic finite element method for friction factor test in solid cylinder compression process. AA1100 and AA6063 aluminum alloys, which show different work hardening characteristics respectively, have been adopted as model materials used for analysis. The main objective of this study is to provide the deformation mechanics in detail in solid cylinder compression process, especially at the die/workpiece interface that is closely related with the frictional conditions. For this reason, solid cylinder compression process has been numerically analyzed. The surface flow patterns at the contact boundary have been analyzed in terms of surface expansion, surface expansion velocity, pressure distributions exerted on the die surface along the die surface. By defining bulge factor, barreling phenomenon also have been examined with calibration curves to verify their effects on the surface flow pattern that is important for evaluating the frictional condition at the interface.

  • PDF

Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 배종욱
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

Development of a New Rapid Compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 정남훈;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.69-75
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature, composition of gas in the cylinder, existence of cylinder lubricant etc. Rapid compression expansion machine, the position and speed of piston of which are able to be controlled by means of a system controlled electrically, and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to copy with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled, hydraulically actuated, and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement on frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder, those are the key function for the in-cylinder combustion experiments on internal combustion engines.

  • PDF

Effect of compression ratio on the heat dissipation of engine (압축비가 기관의 방열에 미치는 영향)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.89-93
    • /
    • 1983
  • This paper describes on experimental investigation into the heat dissipation of Diesel engine, placing emphasis on the variations of compression ratio and cooling water temperature. The engine used for this test was a vertical single-cylinder four-cycle type, having a direct injection. Engine performance and heat transfer rates was tested under the compression ratio 14.3 and 17.4. In this study, the results showed that output and transfer rates of engine decrease in accordance with the decrease of compression ratio. The effect of cooling water temperature and injection delay of fuel on the heat dissipation brings about the decrease of heat transfer rates from cylinder to cooling water.

  • PDF

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine (가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구)

  • Cha, Junepyo;Yoon, Sungjun;Lee, Seokhwon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

A study on the heat dissipation of diesel engine (디이젤기관의 방열에 관한 연구)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.39-50
    • /
    • 1980
  • This paper presents the variations obtained in heat flow rate and engine performance of a four-stroke cycle Diesel engine when there were changes in the temperature of cooling water, compression ratio, injection timing of fuel, and other factors. Heat dissipation of engine cylinder was calculated by the heat transfer coefficient of Nusselt's empirical equation and the analysis of distribution of temperature in cylinder barrel was obtained by the finite element method of two-dimensional steady state heat conduction. In this experiment, the out side temperature of cylinder liner was measured by the data logger, and the temperature distribution of liner was computed by the analysis of triangular finite element model under the assumption due to surface heat flux of cylinder inner surface. The results obtained by this study are as follows. Under the given operating condition, the temperature distribution of cylinder liner by using finite element method shows that the mean temperature of barrel is in accordance with the experimental results of Eichelberg and temperature difference is lower than 4.23.deg. C. The heat dissipation of engine decrease in accordance with the decrease of piston mean velocity, compression ratio, and the increase of coolant temperature. Influence on the delay of injection timing of fuel brings about the decrease of heat rejection over the cylinder at constant test conditions.

  • PDF

Effect of a Heated Curing on Concrete Compressive Strength for Tunnel Form Construction (터널 폼 공법에서 강제양생이 콘크리트강도에 미치는 영향)

  • 이충우;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.232-236
    • /
    • 1993
  • The Tunnel Form(T/F) system instead of traditional euro form has been tried to reduce construction duration and to improve concrete quality in reinforced concrete wall type apartment construction. To find the relationship for concrete compressive strength between cylinder mold and slab, the different curing locations of concrete cylinder mold in the room have been investigated. The test results showed that the compressive strength of the cylinder concrete with middle-upper location in the room was most near concrete compression strength with respect to slab concrete strength.

  • PDF

Compression Test of a TBM Thrust Jack for Validating Buckling Stability (TBM 추진잭의 좌굴 안정성 검토를 위한 압축시험)

  • Mun-Gyu Kim;Min-Gi Cho;Jung-Woo Cho;Han-Young Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • As the jacks provide a thrust force on the inclined surface, bending deformations by a side force occur in the pedestal and rod parts. This can induce disorder or degradation of the thrust module, buckling stability on the inclined compression condition should be clarified to secure the reliability of shield TBM. For analyzing the stability, a buckling testing method for hydraulic cylinder was investigated and compression testing system was installed. Before the test, a numerical analysis was conducted to check the stress concentration parts. The maximum allowable force was loaded on the cylinder specimen at 0 degree surface condition as a preliminary test. After the test, plastic deformations or hydraulic leakage was not observed. The static stability of it was verified at 0 degree condition.