• 제목/요약/키워드: Cylinder Block

검색결과 149건 처리시간 0.026초

피스톤 슬랩에 의해 발생되는 엔진 블록의 표면 진동 속도 예측 모델 (A Prediction Model of Piston Slap Induced Vibration Velocity of Engine Block Surface)

  • 안상태;조성호;김양한;이동수
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.587-592
    • /
    • 1999
  • Piston slap is one of the sources producing engine block surface vibration and mechanical noise. To analyze piston slap-induced vibration, a realistic but simple model is proposed and verified experimentally. A piston is modeled by 3 degree of freedom system and an impact point between piston skirt and cylinder wall by 2 degree of freedom system. Numerical simulation estimates impact forces of piston in cylinder, and the engine block surface vibration response is predicted by the convoluton of the impact forces with measured impulse responses. Experimental verification on the predicted response has been also performed by using a commercial 4-cylinder diesel engine. the predicted and experimental vibration responses confirm that the suggested model is practically useful.

  • PDF

분말야금 공정 중 분말 성형압력이 밀도와 치수에 미치는 영향 (The Influence of Powder Compaction Pressure on Density and Dimension of a Powder Metallurgy Product)

  • 조주현;권영삼;정성택;이민철;전만수
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.244-249
    • /
    • 2007
  • The influence of powder compaction pressure on the hydraulic cylinder block fabricated by powder metallurgy is investigated in this study. The cylinder block is compacted with powder under various compaction pressures and then sintered, and its density and dimensions are measured to reveal the relationship of the powder compaction pressure with the product quality. Moreover, finite element analyses of the density distributions are carried out under the same conditions with the experiments and the predicted results are compared with the measured ones.

사축식 유압 피스톤 펌프의 디스크 편심률에 따른 실린더블록 구동영역에 대한 연구 (A Study on Driving Range of Cylinder Block to Eccentricity Ratio of Disk in Bent axis Type Oil Hydraulic Piston Pump)

  • 정재연;백일현;조인성;송규근;오석형;정용욱
    • 유공압시스템학회논문집
    • /
    • 제5권2호
    • /
    • pp.1-7
    • /
    • 2008
  • To improve the performance of the bent axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore, but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism far the bent axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as driving factor of the piston and the ahead delay angle influenced performance of the bent axis type axial piston pump.

  • PDF

Driving Mechanism of Tapered Pistons in Bent-Axis Design Axial Piston Pumps

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.181-186
    • /
    • 2003
  • In order to assure the quality of the bent axis design axial piston pumps driven by tapered pistons, it is necessary to know the characteristics of force applied to tapered pistons and the mechanism for driving the tapered pistons. Since they are able to perform both reciprocating and spinning motions in cylinder block, it is difficult to understand the driving mechanismand-tomeasure the forces applied to tapered pistons experimentally In the present study, the theoretical mechanism for driving the tapered pistons is studied by use of the geometric method. The driving area of the tapered pistons is measured by measuring the strain of a cylinder forced against a tapered piston using an electric strain gauge and a slip ring. The forces applied to tapered pistons is also investigated with the change of discharge pressure and the rotational speed. As a results of this investigation, it is concluded that the cylinder block is driven by one tapered piston in a limited area and the driving area is changed due to space angle of the tapered pistons and the swivel angle of the cylinder block. It is also observed that the force applied to tapered pistons increases as the discharge pressure and the rotational speed increase.

냉.온간포징법을 이용한 차세대 콤프레샤 실린더 블록 개발에 관한 연구 (A Study on the Development for the Future Compressor Cylinder Block Using of Cold & Hot Forging Method)

  • 김순호
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1301-1306
    • /
    • 2006
  • 알루미늄 합금은 자동차부품 및 전자부품산업 개발에 크게 기여하고 있는 소재로서, 제조방법 중 냉?온간 단조 공법에 의해 제조하는 것이 대량 생산되어지는 자동차 및 전자산업부품개발에 있어서 매우 효율적이다. 따라서, 본 연구에서는 차세대 콤프레샤 실린더 블록 개발을 위하여,AI소재 (AI-Mg-Si계합금)를 활용, 냉 -온간 단조법을 이용 하여 개발하고자 한다. 이를 위해, 제조 시편의 미세조직 및 기계적 성질을 조사하였는데,미세조직은 공정형으로 구성되었으며, $Mg_2Si$의 중간상이 석출되었다. 그리고 인장강도는 291.7MPa 로 나타났으며, 그러한 결과를 바탕으 로 차세대 콤프레샤 실린더 블록시제품을 제작하였다.

엔진블럭 가공라인 초기설계안 검증을 위한 시뮬레이션 사례연구 (A Case Study on the Verification of the Initial Layout of Engine Block Machining Line Using Simulation)

  • 문덕희;성재헌;조현일
    • 한국시뮬레이션학회논문지
    • /
    • 제12권3호
    • /
    • pp.41-53
    • /
    • 2003
  • The major components of an engine are engine block (or cylinder block), cylinder head, crank shaft, connecting rod and cam shaft. Thus the engine shop usually consists of six sub-lines, five machining lines and one assembly line. Flow line is the typical concept of layout for machining these parts, especially for engine block. In order to design an engine block machining line, several factors should be considered such as yearly production target, working hours, machines, tools, material handling equipments and so on. If the designers of manufacturing line were unaware of some factors those would be influenced on the system performance, it would make greater problems in the phase of mass production. Therefore the initial design of engine block machining line should be verified carefully. Simulation is the most powerful tool for analyzing the initial layout. This paper introduces the major factors those should be considered for designing the machining line and their effects on the system performance. 3D simulation models are developed with QUEST. Using the simulation model developed the initial layout is analyzed, and we suggest some ideas for improvement.

  • PDF

사판식 유압 픽스톤 펌프의 실린더블록과 밸브 플레이트의 응력해석 (Stress Analysis of the Cylinder Block and the Valve Plate of the Swash Plate Type Oil Hydraulic Piston Pump)

  • 김지홍;조인성;백일현;정재연;오석형
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.255-260
    • /
    • 2004
  • Recently, the technologies related to the swash plate type oil hydraulic piston pump are requiring extreme technologies to overcome the limit of high efficiency in cope with high speed and pressure, and are devoted to compact the unit, to gain low noise level, and to adopt electronic technologies, and the question regarding to maximize the mechanical efficiency, that is, to minimize the torque loss by minimizing the leakage loss in the relative sliding region but these are in trade-off relation that tribological responding is very difficult. Cylinder block-valve pate in high speed relative sliding motion has the characteristics that should be extremely controlled for the optimization of these leakage loss and mechanical efficiency, and pressure resistance designing of them is important for high pressure performance. But, studies on the stress analysis of these parts have not been performed briskly, so in this paper the stress distribution and the region where the highest displacement appears are described through the static stress analysis using CATIA V5. Through the future studies on these theme, it has the purpose of finding the suitable materials for the other parts as well as cylinder block and valve plate, in cope with high pressure operation through the stress analysis with the most similar conditions for the practical operation.

  • PDF

사판식 유압 피스톤 펌프의 응력해석에 관한 연구 (A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type)

  • 정봉수
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2424-2429
    • /
    • 2015
  • 유압 피스톤 펌프에서, 고속 상대운동을 하는 실린더 블록과 밸브 플레이트는 누설 및 마찰 손실의 최적화를 위해 극단적으로 제어되어야 하는 특성을 가지고 있으며, 내압 특성 설계는 고압 성능에 매우 중요하지만 이에 대한 응력 해석에 관한 연구가 활발하게 수행되지는 않았다. 따라서 본 논문에서는 CATIA V5를 사용한 정적 응력 해석을 통하여 사판식 유압 피스톤 펌프의 실린더 블록과 밸브 플레이트의 응력과 변위를 해석하고자 하였으며, 실린더 블록의 최대응력은 실린더 뒷부분 동 재질의 접합 소재에 발생하며, 축방향에 비해 반경방향 작용압력이 응력과 변위에 더 큰 영향을 주고, 응력은 약 66%, 변위는 약 30% 더 크게 나타났다. 밸브 플레이트의 경우 재질 및 형상에 대한 검토가 요구됨을 알 수 있었다.

스파크 점화 기관의 실린더 블록 진동 신호를 이용한 노킹 제어 (Knock Control Using Cylinder Block Vibration Signals in a Spark-Ignition Engine)

  • 함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.186-194
    • /
    • 1997
  • The objective of this study is to develope knock control algorithms which can increase engine power without causing frequent knock occurrence. A four cylinder spark-ignition engine is used for the experiments to develop knock control algorithms which use block vibration signals. Knock occurrence is detected accurately by using knock threshold values which consider the difference of transmission path of each cylinder. Spark timing is controlled both simultaneously and individually. With the simultaneous control, torque gain is achieved by retarding the spark timing on knock occurrence in propotion to the knock intensity. The individual knock control algorithm results in higher torque gain than the simultaneous knock control algorithm. The knock occurrence frequency of the individual knock control algorithm is about twice the value of the simultaneous knock control algorithm results. Both control algorithms give similar torque gain of about 3% when they are optimized.

  • PDF

Fluid film measurements on the spherical valve plate in oil hydraulic axial piston pumps

  • Kim, J.K.;Jung, J.Y.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.381-382
    • /
    • 2002
  • The Fluid film between the valve plate and the cylinder block was measured by use of a gap sensor and the mercury-cell slip ring unit under real working conditions. During the operating periods, experiments with discharge pressure, revolution speed, and valve geometry was carried out for the fluid film on the valve plate. To investigate the effect of the valve shape, we designed two valve plates each having a different shape; the first valve plate was a plane valve plate. while the second valve plate was a spherical valve plate. It was noted that these two valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rate and the shan torque were also investigated in order to clarify the difference between these two types of valve plates. From the results of this study. we found that the spherical valve plate estimated good fluid film patterns and performance more than the other valve plate in oil hydraulic axial piston pumps.

  • PDF