• Title/Summary/Keyword: Cyclopentanethiol

Search Result 3, Processing Time 0.014 seconds

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface

  • Kang, Hungu;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1383-1387
    • /
    • 2013
  • The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) prepared from benzenethiol (BT), cyclohexanethiol (CHT), and cyclopentanethiol (CPT) on Au(111) surface were examined by scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to understand the influence of thiol molecular backbone structure on the formation and reductive desorption behavior of SAMs. STM imaging showed that BT and CPT SAMs on Au(111) surface formed at room temperature were mainly composed of disordered domains, whereas CHT SAMs were composed of well-ordered domains with three orientations. From these STM results, we suggest that molecule-substrate interaction is a key parameter for determining the structural order and disorder of simple aromatic and alicyclic thiol SAMs on Au(111). In addition, the reductive desorption peak potential for BT SAMs with aromatic rings was observed at a less negative potential of -566 mV compared to CHT SAMs (-779 mV) or CPT SAMs (-775 mV) with aliphatic cyclic rings. This reductive desorption behavior for BT SAMs is due to the presence of p-orbitals on the aromatic rings, which promote facile electron transfer from the Au electrode to BT as compared to CHT and CPT. We also confirmed that the reductive desorption behavior for simple alicyclic thiol SAMs such as CHT and CPT SAMs on Au electrodes was not significantly influenced by the degree of structural order.