• Title/Summary/Keyword: Cyclooxygenase-2 저해

Search Result 106, Processing Time 0.022 seconds

Hominis Placenta suppress Calcium release, cyclooxygenase expression and PGE2 synthesis (자하거(紫河車)가 칼슘재흡수, cyclooxygenase의 발현, PGE2 생합성에 미치는 영향)

  • Jeong, Yeon-Ho;Kim, Ra-Young;Lee, Tae-Kyun;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • Purpose : 자하거(Hominis Placenta; HP)는 건강한 사람의 태반을 홍제(烘製)하여 건조한 것으로 한의학에서는 기혈(氣血)을 대보(大補)하고 신정(腎精)을 보익(補益)시켜 구병(久病)으로 인한 신체허약(身體虛弱)이나 혹은 체질허약(體質虛弱)과 혈기부족(氣血不足) 및 신허정휴(腎虛精虧) 등 등(證)을 치료(治療)하는데 단미(單味) 또는 복방(複方)에 배오(配伍)하여 쓰여왔다. 또한 자하거는 면역학적으로 골대사 활성이 있는 것으로 알려져 있어 본 연구에서는 자하거의 항골다공증 활성을 분자세포생물학적으로 검정하고자 하였다. Methods : Osteoblast cells에서 자하거가 COX-2 mRNA의 발현과 $PGE_2$ 생합성을 억제시키는지를 관찰하기 위해 먼저 TNF-${\alpha}$, IL-${\beta}$ 와 IL-6를 처리한 후 $PGE_2$의 생합성과 더불어 COX-2 mRNA의 발현을 확인하였다. 그 후 TGF-${\beta}$, 자하거(紫河車)와 이 둘의 조합인 자하거+TGF-${\beta}$가 COX-2 mRNA 발현과 $PGE_2$ 생합성을 저해시키는지 관찰하였다. 또한 자하거가 IL-1${\beta}$로 유발된 흰쥐의 과칼슘혈증을 감소시키는지를 확인하였다. Results : IL-6, IL-1${\beta}$와 TNF-${\alpha}$를 동시에 처리하면 이것을 단독으로 처리한 것과 비교해 볼 때 $PGE_2$의 생합성과 더불어 COX-2 mRNA의 수치가 상승작용을 일으키며 증가하였다. TGF-${\beta}$, 자하거와 이 둘의 조합인 자하거+TGF-${\beta}$은 COX-2 mRNA 발현, $PGE_2$ 생합성 및 골재흡수를 감소시켰다. 자하거(紫河車)는 IL-1${\beta}$, TNF-${\alpha}$와 IL-6 각각 또는 이들의 조합으로 인해 증가하는 COX-2 mRNA 발현과 $PGE_2$ 생성을 감소시키는 반면 COX-1 mRNA 발현에는 유의성 있는 영향을 미치지 않았다. 한편 자하거는 농도의존적으로 IL-1${\beta}$로 유발된 흰쥐의 과칼슘혈증을 감소시켰다. 이러한 결과는 흰쥐의 두개골 골아세포에서 $PGE_2$ 생산에 대한 IL-${\beta}$, TNF-${\alpha}$, IL-6의 상승작용이 COX-2의 유전자 발현 증가에 기인함을 보여주었다. Conclusions : 이러한 결과들로부터 자하거가 골대사과정중 골재흡수를 억제하는데 효과적임을 밝히게 되었으며, 자하거의 골다공증의 억제기전이 골재흡수관련 단백질들의 전사조절에 있음을 최초로 해명하게 되었다.

  • PDF

Anti-inflammatory effects of Cordyceps militaris extracts (밀리타리스 동충하초 추출물의 항염활성 효과)

  • Choi, Je-Hun;Kim, Geum-Soog;Lee, Seung-Eun;Cho, Jae-Han;Sung, Gi-Ho;Lee, Dae-Young;Kim, Seung-Yu;Lee, Tae-Ho;Noh, Hyung-Jun
    • Journal of Mushroom
    • /
    • v.10 no.4
    • /
    • pp.249-253
    • /
    • 2012
  • This study was carried out to investigate anti-inflammatory effects of mushroom, Cordyceps militaris. Anti-inflammatory effects analysis was followed by peroxynitrite inhibition activity. Cordyceps militaris mushrooms extracts were screened about inhibition effects of nitric oxide for Raw 264.7 cell treated by lipopolisaccharide(LPS) and inhibition of cyclooxygenase-2(COX-2) for inflammatory effects. In our result, Cordyceps militaris mushrooms were good resource for anti-inflammatory effects and to be followed more research about related anti-inflammatory effects.

Modulation of arachidonic acid metabolism and inflammatory process in macrophages by different solvent fractions of Glasswort (Salicornia herbacea L.) extract (큰포식세포에서 퉁퉁마디 추출물의 아라키돈산 대사효소조절 및 항염증 활성)

  • Kang, Smee;Choi, YooMi;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.671-679
    • /
    • 2018
  • Glasswort has attracted an attention because of its interesting physiological actions. In this study, the effects of glasswort on inflammatory events including nitric oxide (NO) synthesis and arachidonic acid metabolism in cultured RAW264.7 macrophages were investigated. A series of solvent fractions, including fractions of hexane (Fr.H), ethyl ether (Fr.E), ethyl acetate, butanol, and water, were prepared from a 70% methanol extract of glasswort. Among the fractions, Fr.E showed the strongest inhibition of NO synthesis and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated macrophages. At a concentration of $80{\mu}g/mL$, Fr.E decreased the NO and iNOS levels by 73 and 77%, respectively, after 24 h. Fr.E showed the most potent inhibitory effects on the expressions of cytosolic phospholipase $A_2$ and cyclooxygenase-2 with $IC_{50}$ values of 33.4 and $27.9{\mu}g/mL$, respectively. Fr.H and Fr.E also significantly inhibited 5-lipoxygenase expression in LPS-stimulated macrophages. These results suggest that the hydrophobic fractions of glasswort possess anti-inflammatory activities through modulating the arachidonic acid metabolism and NO synthesis.

Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.) (정향(Eugenia caryophyllata Thunb.) Eugenol 및 그 유도체의 항산화 및 항염증활성)

  • Leem, Hyun-Hee;Kim, Eun-Ok;Seo, Mi-Jae;Choi, Sang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1361-1370
    • /
    • 2011
  • Antioxidant and anti-inflammatory activities of eugenol and its derivatives from clove (Eugenia caryophyllata Thunb.) were evaluated using in vitro assay systems by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, cyclooxygenase-2 (COX-2), and 15-lipoxygenase (15-LOX). Among eight different crude medicinal drugs tested, volatile extracts of clove extracted by steam distillation extraction (SDE) showed potent DPPH radical scavenging activity ($IC_{50}$=8.85 ${\mu}g/mL$) as well as strong inhibitory activity against COX-2 (58.15%) and 15-LOX (86.15%) at 10 ${\mu}g/mL$ and 25 ${\mu}g/mL$, respectively. Major volatile components of clove were identified as eugenol, trans-caryophyllene, and acetyleugenol by GC-MS analysis. Out of three eugenol derivatives, eugenol, methyl eugenol, and acetyl eugenol, eugenol showed the strongest DPPH radical scavenging activity and COX-2 inhibitory activity, whereas methyl eugenol exhibited the strongest 15-LOX inhibitory activity. Finally, the contents of the three eugenol derivatives in clove were quantified by analytical HPLC. Contents of eugenol and acetyl eugenol in clove were 6.95% and 1.85% per dry weight, respectively. These results suggest that eugenol and its derivatives in steam distilled extract of clove may be useful as potential antioxidant and anti-inflammatory agents.

Convergence Studies of NO Homeostasis in Cellular Signalling (세포의 신호전달 과정에서 NO 항상성에 관한 융복합 연구)

  • Oh, Hee-Kyun;Do, Eun-Young;Park, Hae-Ryoung
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.461-467
    • /
    • 2015
  • Saussurea lappa is known for a variety of physiological activities as a component but has not known to show the effect of the cellular signaling pathway. We investigated the anti-inflammatory effects by Saussurea lappa ethanol extract on the LPS(lipopolysaccharide) induced nitric oxide (NO) production by RAW 264.7 cell line. It shows the expressions of iNOS and COX-2 at the transcriptional level (RT-PCR). The Saussurea lappa ethanol extract showed transcriptional expression levels of pro-inflammatory cytokine TNF- and IL-$1{\beta}$ induced by LPS(lipolysaccharide) in RAW264.7 cell line. Saussurea lappa ethanol extract reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the RNA levels in a concentration-dependent manner. The finding that ethanol extract of Saussurea lappa has an influence on NO (nitric oxide) homeostasis in the study of the action mechanism on the macrophage-mediated inflammatory reaction was considered in terms of convergence. And it is to provide an important basis for the prevention and treatment of inflammatory diseases in the future.

Anti-inflammatory Activities of Taxifolin from Opuntia humifusa in Lipopolysaccharide Stimulated RAW 264.7 Murine Macrophages (천년초의 Taxifolin이 마우스대식세포(RAW 264.7 cell)에 미치는 항염증활성)

  • Kim, Jaeyoung;Lee, Yonghwa;An, Hyeon-jin;Lee, Jae-duk;Yi, Yongsub
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.241-246
    • /
    • 2015
  • This study was performed to investigate the antiinflammatory activities of taxifolin from Opuntia humifusa. A potent anti-oxidant activity was shown from the leaf extract at $IC_{50}$ value of $38.33{\pm}1.07{\mu}g/mL$ and fruit extract at $IC_{50}$ value of $40.23{\pm}2.21{\mu}g/mL$ by 1,1-diphenyl-2-picrylhydrazyl assay. Fraction of taxifolin from leaf extract identified using high performance liquid chromatography and gas chromatography/mass spectrometry. The results of cell viability indicated that taxifolin did not show cytotoxicity on RAW 264.7 cells at $500{\mu}M$ of concentration. The result showed that taxifolin inhibited lipopolysaccharide (LPS)-induced production of Nitrite oxide. In addition, taxifolin inhibited LPS-induced tumor necrosis factor-${\alpha}$ and interleukin-6 production by cytokine assay and cyclooxygenase-2 expression by western blot analysis, meaning taxifolin has a significant anti-inflammatory effect. Our results suggested that taxifolin from Opuntia humifusa showed anti-inflammatory activities.

CHANGE OF THE INVASIVENESS WITH SELECTIVE COX-2 INHIBITION IN AN ORAL SQUAMOUS CELL CARCINOMA CELL LINE, KB ; PRELIMINARY IN VITRO STUDY (선택적 COX-2 저해를 통한 구강암세포주 KB의 침습성 변화에 관한 예비연구)

  • Lee, Eun-Jin;Kim, Myung-Jin;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.2
    • /
    • pp.103-108
    • /
    • 2007
  • Cyclooxygenase-2 (Cox-2) is known as one of the critical factor in carcinomas of various organs. However, the importance of Cox-2 in oral squamous cell carcinoma has not been fully described yet. The purpose of this study is to evaluate the anti-cancer effect of selective cox-2 inhibitor, celecoxib in an oral squamous cell carcinoma cell line, KB with respect to cytotoxicity test, in vitro invasion and MMP-2 expression. In cytotoxicity test, celecoxib treated group showed definitely concentration dependent cytotoxicity. In addition, administration of celecoxib reduced the invasive potential of KB cell line significantly in invasion assay. However, there was no remarkable difference of the MMP-2 expression between the celecoxib treated group and the control group. Considering these data, celecoxib had a potential cytotoxic agent to oral squamous cell carcinoma cells. Also, it had anti-invasive property without acting on the MMP-2 expression mechanism. Therefore, it was postulated that celecoxib had the possibility of anti-cancer agent in treatment strategies of oral squamous cell carcinoma.

Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-O-${\beta}$-D-sophoroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells (Kaempferol-3-O-${\beta}$-D-sophoroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 억제를 통한 LPS에 의해 유도되는 iNOS, COX-2 및 cytokine들의 발현 저해효과)

  • Park, Seung-Jae;Shin, Ji-Sun;Cho, Woong;Cho, Young-Wuk;Ahn, Eun-Mi;Baek, Nam-In;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • In the present study, we investigated the anti-inflammatory effects by kaempferol-3-O-${\beta}$-D-sophoroside (KS) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line compared with kaempferol. KS significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, KS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6) were also reduced by KS. Moreover, KS attenuated the LPS-induced activation of nuclear factor-kappa B ($NF{-\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by KS are achieved by the downregulation of $NF{-\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Antioxidant and Anti-inflammation Effects of Water Extract from Buckwheat (메밀 추출물의 항산화 및 항염증 효능)

  • Kang, Hyun Woo
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.190-199
    • /
    • 2014
  • This study was conducted to investigate the effects of the hot water extract from buckwheat (WEB) in RAW-264.7 macrophage cells against lipopolysaccharide (LPS). In these experiments, we evaluated the anti-inflammatory effects of WEB by measuring MTT assay, nitric oxide (NO), inducible NOS (iNOS) production, and cyclooxygenase-2 (COX-2) expression by Western blotting. The extracts showed a protective effect by increasing cell viability on LPS in RAW264.7 cells. WEB (0.25, 0.5, and 1.0 mg/mL) significantly suppressed LPS-stimulated production of NO. Also, WEB reduced the expression of iNOS and COX-2 proteins. The present results show that WEB has potent anti-inflammatory effects on RAW264.7 cells. In addition, WEB has various antioxidant effects as a result of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) which possess a radical scavenging activity. The total polyphenol and flavonoid contents of the WEB were $13.22{\pm}3.69mg\;GAE/g$ extract and $38.53{\pm}5.20mg\;CE/g$ extract respectively. The present results give the understanding of biological activities of buckwheat and encourage their application for supplements.

Inhibitory Effect of Ethanol Extract of Monascus-fermented Red Yeast Rice on Proinflammatory iNOS and COX-2 Protein Expression in LPS-stimulated RAW 264.7 Macrophage Cells (Monascus sp. BHN-MK로 발효생산한 홍국 에탄올 추출물의 Raw 264.7 대식세포에 있어 친-염증성 iNOS와 COX-2 단백질 발현 억제 효과)

  • Kim, Ki Hyun;Lee, Jung-Hyeong;Kwon, Gi-Seok;Seo, Eul Won;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2020
  • Red yeast rice has been extensively used as a food and traditional medicine for thousands of years in Korea. Monascus produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites, specifically monacolin K, γ-aminobutyric acid, and dimerumic acid, have been reported to lower cholesterol and blood pressure because of certain antioxidant effects. This study investigated the total phenolic content of ethanol extract from red yeast rice fermented with Monascus sp. BHN-MK and its anti-inflammatory effect on LPS-stimulated RAW 264.7 macrophage cells. To assess its anti-inflammatory effect, the inhibitory activity of the ethanol extract on LPS-induced NO production and expression levels of iNOS and COX-2 proteins in macrophage cells were measured. Its total polyphenol content was higher than that of ordinary non-fermented rice. Its NO production inhibition activity was comparable to that of the negative control group treated with LPS at a concentration of 400 ㎍/ml. Western blot revealed a significant decrease in the inhibition of iNOS and COX-2 protein expression at concentrations of 400 and 800 ㎍/ml, respectively. Red yeast rice ethanol extracts exerted the strongest anti-inflammatory effects. The results indicate that red yeast rice could be used as a functional cosmetic and anti-inflammatory material.