• 제목/요약/키워드: Cyclooxygenase pathways

검색결과 117건 처리시간 0.021초

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Kang, Sukyung;Lee, Jae Sung;Lee, Hai Chon;Petriello, Michael C.;Kim, Bae Yong;Do, Jeong Tae;Lim, Dae-Seog;Lee, Hong Gu;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.579-587
    • /
    • 2016
  • Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPS-induced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.

Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii

  • Kim Ji-Young;Ahn Myoung-Hee;Song Hyun-Ouk;Choi Jong-Hak;Ryu Jae-Sook;Min Duk-Young;Cho Myung-Hwan
    • Parasites, Hosts and Diseases
    • /
    • 제44권3호
    • /
    • pp.197-207
    • /
    • 2006
  • This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and $MIP-1\alpha$, and enzyme, COX-2/prostaglandin $E_2(PGE_2)$ in infected cells via western blot, $[^3H]-uracil$ incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. $MIP-1\alpha$ mRNA was increased in macrophages at 18 hr PI. MCP-1 and $MIP-1\alpha$ were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. $PGE_2$ from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, $MIP-1\alpha$, COX-2 and $PGE_2$ were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.

수소양삼초경(手少陽三焦經) 정격(正格)의 자경보사(自經補瀉)(중저 보(中渚 補), 액문 사(液門 瀉)) 자침(刺鍼)이 정상 흰쥐의 뇌혈류량(腦血流量) 및 혈압(血壓)에 미치는 영향(影響) (Effects of Joongjeo($TE_3$) Supplementation Aekmoon($TE_2$) Draining on Changes in Cerebral Blood Flow and Blood Pressure in Normal Rats)

  • 김희정;류충열;조명래
    • Journal of Acupuncture Research
    • /
    • 제25권6호
    • /
    • pp.1-12
    • /
    • 2008
  • Objectives : Joongjeo($TE_3$) Supplementation Aekmoon($TE_2$) Draining is a method belongs to Ohaeng-acupuncture, using directional supplementation and draining. Methods : This study was designed to investigate the effects of $TE_3$ supplementation $TE_2$ draining on changes in cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) in normal rats. For these reasons, the present author investigated rCBF and MABP using laser doppler flowmeter in normal rats. In addtion, the present author also investigated action mechanisms of $TE_3$ supplementation $TE_3$ draining on changes in rCBF and MABP too. Results : In this results, $TE_3$ supplementation $TE_2$ draining elevated rCBF in time-dependent manner, but MABP levels decresed by $TE_3$ supplementation $TE_2$ draining. Pre-treatment with indomethacin (IDM), an inhibitor of cyclooxygenase, inhibited increase of rCBF effectively. But pre-treatment with methylene blue(MTB), an inhibitor of guanylate cyclase, decreased rCBF levels. In addition, pre-treatment with IDM also decreased MABP levels, but pre-treatement with MTB increased MABP levels. Conclusions : In conclusion, these results suggest that $TE_3$ supplementation $TE_2$ draining is effective to treat patient with disease related to cerebral ischemia, because $TE_3$ supplementation $TE_2$ draining can increase rCBF. In addition, the mechanisms are thought to be related to guanylate cyclase pathways.

  • PDF

좌금환(左金丸)의 혈관이완과 $K^+$ channel (Role of $K^+$ Channels in the Vasodilation of Jagumhuan)

  • 손창우;이헌재;유가량;신흥묵
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.743-748
    • /
    • 2005
  • This study was performed for the investigation of vasodilatory efficacy and its underlying mechanisms of Jagumhuan(JGH), a herbal remedy. JGH produced completely endothelium-dependent relaxation and relaxed phenylephrine(PE)-precontracted aorta in a concentration dependent manner. The magnitude of relaxation was greater in PE induced contraction than that of KCl, suggesting involvement of $K^+$ channel in the relaxant effect. Both glibenclamide$(10^{-5}M)$, a $K_{ATP}$ channel inhibitor and indometacin, a cyclooxygenase inhibitor, completely prevented this relaxation. The relaxation effects of JGH, involve in part the release of nitric oxide from the endothelium as pretreatment with L-NAME, an NOS inhibitor, and methylene blue, a cGMP inhibitor, attenuated the responses by 62% and 58%, respectively. In addition, nitrite was produced by JGH in human aortic smooth muscle cells and human umbilical vein endothelial cells. The relaxant effect of JGH was also inhibited by 55.41% by tetraethylammonium(TEA; 5mM), a $K_{Ca}$ channel inhibitor. In the absence of extracellular $Ca^{2+}$, pre-incubation of the aortic rings with JGH significantly reduced the contraction by PE, suggesting that the relaxant action of the JGH includes inhibition of $Ca^{2+}$ release from intracellular stores. These results indicate that in rat thoracic aorta, JGH may induce vasodilation through ATP sensitive $K^+$ channel activation by prostacyclin production. However, the relaxant effect of JGH may also mediated in part by NO pathways and $Ca^{2+}$ activated $K^+$ channel.

The anticancer effect of Bioconverted Danggui Liuhuang Decoction EtOH extracts in human colorectal cancer cell lines

  • Park, Hyo-Hyun;Park, Ji-Eun;Son, Eun-Kyung;Kim, Bo-Mi;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제63권1호
    • /
    • pp.103-110
    • /
    • 2020
  • Objective: The objective of our study was to investigate anti-cancer effects of Danggui Liuhuang Decoction extract bioconverted by protease liquid coenzyme of Aspergillus kawachii (DLD-BE), compared to a non-bioconverted DLD extract (DLD-E) and determine the underlying mechanisms. Methods: DLD-E and DLD-BE were evaluated for their ability to modulate these signaling pathways and suppress the proliferation of human colorectal cancer (CRC) cells, HCT-116, LoVo, and HT-29. The anti-cancer effects of DLD-E and DLD-BE were measured by using proliferation and migration assays, cell cycle analysis, Western blots, and real-time PCR. Results: In this study, treatment with DLD-E and DLD-BE at concentrations of 25-100 ㎍/mL inhibited proliferation and migration in human CRC cells. DLD-BE induced apoptotic cell death and decreased COX-2 expression in HT-29 cells. The mechanisms of action included modulation of the AKT and extracellular-signal-regulated kinase signaling cascades along with inhibition of COX-2 expression. The results demonstrate novel anti-cancer mechanisms of DLD-BE against the growth of human CRC cells. Thus, we propose that DLD-BE can be developed as a more potent supplement to inhibit colorectal tumor growth and intestinal inflammation than DLD-E.

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석 (L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses)

  • 이영수
    • 약학회지
    • /
    • 제60권3호
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.

석결명(石決明)의 항염증효과(抗炎症效果) (Anti-Inflammatory Effects of Haliotidis Concha)

  • 문수영;김영우;김상찬
    • 한방안이비인후피부과학회지
    • /
    • 제26권4호
    • /
    • pp.70-80
    • /
    • 2013
  • Objectives : Haliotidis Concha has been used to treat various human diseases such as liver dysfunction and inflammatory disorder. Although it has been shown the effects of Haliotidis Concha on the various diseases, it has almost not been studied about the anti-inflammatory effects of the Haliotidis Concha and its mechanisms. Methods : This research investigated the effects of the Haliotidis Concha ethanol extract (HCE) on the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) as well as tumor necrosis factor-alpha (TNF-${\alpha}$). The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were assayed by immunoblot analyses, and the productions of NO, $PGE_2$ and TNF-${\alpha}$ were assessed by ELISA. Results : Haliotidis Concha decreased the production of NO and $PGE_2$, and inhibited the expression iNOS and COX-2 proteins in a concentration-dependent manner in LPS-treated Raw 264.7 cells. HCE suppressed the ability of LPS to activate the signaling pathways of nuclear factor kappa B (NF-${\kappa}B$) as indicated by HCE inhibited nuclear NF-${\kappa}B$ level and I-${\kappa}B{\alpha}$ phosphorylation. Also, HCE inhibited mitogen-activated protein kinases (MAPKs). Conclusions : HCE repressed the production of LPS-inducible NO, $PGE_2$ and TNF-${\alpha}$, which may be mediated by inhibition of NF-${\kappa}B$ translocation. This study suggest the use for the treatment of acute inflammatory disorders.

Activation of SAPK and Increase in Bak Levels during Ceramide and Indomethacin-Induced Apoptosis in HT29 Cells

  • Kim, Ju-Ho;Oh, Sae-Ock;Jun, Sung-Sook;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.75-82
    • /
    • 1999
  • It has been reported that activation of sphingomyelin pathway and nonsteroidal anti-inflammatory drugs (NSAIDS) inhibit the promotion of colon carcinoma. Ceramide, a metabolite of sphingomyelin, and indomethacin were shown to induce apoptosis in colon carcinoma cells. However, the mechanisms of ceramide- and indomethacin-induced apoptosis in the colon carcinoma cells are not clearly elucidated. Recent studys showed that indomethacin-induced apoptosis in colon cancer cells through the cyclooxygenase-independent pathways, and that may be mediated by generation of ceramide. In this study, we compared effects of ceramide and indomethacin on important modulators of apoptotic processes in HT29 cells, a human colon cancer cell line. Ceramide and indomethacin induced apoptosis dose- and time- dependently. Ceramide and indomethacin increased stress-activated protein kinase (SAPK) activity, and decreased mitogen-activated protein kinase (MAPK) activity. The expression of Bak was increased by the treatment of ceramide and indomethacin. The expression of other Bcl-2 related proteins (Mcl-1, $Bcl-X_L,$ Bax) which were known to be expressed in colon epithelial cells was not changed during the ceramide- and indomethacin-induced apoptosis. Our results suggest that ceramide and indomethacin share common mechanisms for induction of apoptosis in HT29 cells.

  • PDF