• Title/Summary/Keyword: Cyclone

Search Result 592, Processing Time 0.03 seconds

Development of Triboelectrostatic Separation Technique for Material Separation of EVA & PET Mixture Plastic Wastes (EVA와 PET 혼합(混合) 폐플라스틱의 재질분리(材質分離)를 위한 마찰하전형(摩擦荷電形) 정전선별(靜電選別) 기술개발(技術開發))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Kim, Byoung-Gon;Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2009
  • A research on material separation of EVA and PET mixture plastic waste using a triboelectrostatic separator has been carried out. It was found that PP was the best charging material to give the highest charge on the surface of EVA and PET mixture plastics with an opposite polarity. Therefore, a charger of pipe line type using PP material was manufactured for separation of EVA and PET mixture plastic waste. At optimum test conditions that used PP cyclone charger developed in this study, we could separate out PET with a glade of 98.7% and a recovery of 89.7%.

Application of Bypass Flow for Improving Performance of the Vertical Column Pneumatic Separator (수직(垂直)컬럼형(形) 풍력선별기(風力選別機)의 분리효율향상(分離效率向上)을 위한 bypass유로(流路)의 적용(適用))

  • Lee, Gye-Seung;Song, Young Jun;Yotsumoto, Hiroki
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 2013
  • A vertical column pneumatic separator was modified to improve its separation performance. A branch column was installed at the center of the main column, which created a bypass flow and changed the flow rate of the main column before and after the branch column. To separate a mixture comprising light and heavy materials, the airflow in main column after the branch column was set to lift the only light materials and the airflow in main column before the branch column was set to prevent the flow of the light materials from flowing downwards. Materials directed into the branch column were separated from the flow and returned to the feeder through the cyclone linked to the branch column. The performances of the straight-type separator and the modified separator were compared using glass and zirconia beads with a narrow size distribution.

An Adaptive Viterbi Decoder Architecture Using Reduced State Transition Paths (감소된 상태천이 경로를 이용한 적응 비터비 복호기의 구조)

  • Ko, Hyoungmin;Cho, Won-Kyung;Kim, Jinsang
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.190-196
    • /
    • 2004
  • The development of a new hardware structure which can implement the viterbi algorithm efficiently is required for applications such as a software radio because the viterbi algorithm, which is an error correction code function for the second and the third generation of mobile communication, needs a lot of arithmetic operations. The length of K in the viterbi algorithm different from each standard, for examples, K=7 in case of IS-95 standard and GSM standard, and K=9 in case of WCDMA and CDMA2000. In this paper, we propose a new hardware structure of an adaptive viterbi decoder which can decode the constraint length in K=3~9 and the data rate in 1/2 ~ 1/3. Prototyping results targeted to Altera Cyclon EPIC20F400C8, shows that the proposed hardware structure needs maximum 19,276 logic elements and power dissipation of 222.6 mW.

  • PDF

Estimation of the National Burden of Disease and Vulnerable Population Associated with Natural Disasters in Korea: Heavy Precipitation and Typhoon

  • Han, Hyun-Jin;Kim, Jong-Hun;Chung, Soo-Eun;Park, Jae-Hyun;Cheong, Hae-Kwan
    • Journal of Korean Medical Science
    • /
    • v.33 no.49
    • /
    • pp.314.1-314.15
    • /
    • 2018
  • Background: Despite its growing significance, studies on the burden of disease associated with natural disasters from the perspective of public health were few. This study aimed at estimating the national burden of disease associated with typhoons and torrential rains in Korea. Methods: During the period of 2002-2012, 11 typhoons and five torrential rains were selected. Mortality and morbidities were defined as accentual death, injury and injury-related infection, and mental health. Their incidences were estimated from National Health Insurance Service. Case-crossover design was used to define the disaster-related excess mortality and morbidity. Disability-adjusted life years (DALYs) were directly assessed from excess mortality and morbidity. Results: The burden of disease from typhoons increased with the intensity, with 107.7, 30.6, and 36.6 DALYs per 100,000 per event for strong, moderate, and weak typhoons, respectively. Burden of disease from torrential rains were 56.9, 52.8, and 26.4 DALYs per 100,000 per event for strong, moderate, and weak episodes, respectively. Mental disorders contributed more years lived with disability (YLDs) than did injuries in most cases, but the injury-induced YLDs associated with strong typhoon and torrential rain were higher than those of lower-intensity. The elderly was the most vulnerable to most types of disaster and storm intensities, and males younger than 65 years were more vulnerable to a strong torrential rain event. Conclusion: The intensity of torrential rain or typhoon was the strongest determinant of the burden of disease from natural disasters in Korea. Population vulnerable may vary depending on the nature and strength of the disasters.

A Study on the Heavy Rainfall Cases Associated with Low Level Jet Inflow along the Changma Front (장마전선상에서 하층제트 유입으로 인한 집중호우에 관한 연구)

  • Choi, Ji-Young;Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • In general, heavy rainfall in Korea is mostly associated with inflow of 850hPa low-level jet. It transports abundant heat and moisture flux to the Changma front. In this study, synoptic characteristics of heavy rainfall in Korea from a case study is examined by classifying heavy rainfall cases with synoptic patterns, in particular distribution of upper- and low-level jets, western North Pacific high, and moisture flux. The surface and upper-level weather charts including auxiliary analysis chart and radar and satellite images obtained from the Korea Meteorological Administration, and 500hPa geopotential heights from NCEP/NCAR are used and then KLAPS is applied to understand the local atmospheric structure associated with heavy rainfall. Results show that maximum frequency in 60 heavy rainfall cases with more than 150mm/day appears in the Changma type of 43 cases (a proportion in relation to a whole is 52%) including the combined Changma types with typhoon and cyclone. As indicated in previous studies, most heavy rainfall cases are related to inflow of low-level jet. In addition, synoptic characteristics based on the analyses of weather charts, radar and satellite images, and KLAPS in heavy rainfall case of 12 July, 2009 reveal that the atmospheric vertical structure in particular equivalent potential temperature favorable for effective inflow of warm and moist southwesterly into the Changma front is linked to large potential instability and the strong convergence accompanied with low-level jet around Suwon contributes to atmospheric upsliding along the Changma front, producing heavy rainfall.

A Review of Observed Climate Change in Korean Peninsula (한반도 지역 관측 기후변화 고찰)

  • Ho, Chang-Hoi;Lee, Min-Hee;Park, Tae-Won;Lee, Seungmin
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.221-235
    • /
    • 2011
  • This study summarizes previous studies on the climate change over Korea. Several studies on climate change in the neighboring countries as well as the entire globe are reviewed. Temperature data obtained from modern observational system show an increasing trend beyond the natural variations. The increasing rate of sea surface temperature (SST) over the ocean basins surrounding Korea is higher than that of the global-mean SST. The large increase in the SST over the oceans surrounding Korea may enhance tropical cyclone activity and heavy rainfall frequency in Korea. In addition, it has been reported that the changes in large scale circulation associated with global climate change influence the spatio-temporal variation of monsoon including Changma in summer and cold surges in winter. Although all researches on the subject were not fully discussed in this study due to short period of preparation, allowed pages, and authors' limited knowledge, we expect that this summarized reviews would be helpful to understand climate changes over Korea and the surrounding regions.

Numerical Study on the Process Analysis of Biomass Fast Pyrolysis in a Circulating Fluidized Bed (순환유동층 반응기내 바이오매스의 급속열분해 공정해석에 관한 수치해석적 연구)

  • Lee, Yu Ri;Park, Hoon Chae;Choi, Myung Kyu;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.518-527
    • /
    • 2017
  • The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Relationship between Low-level Clouds and Large-scale Environmental Conditions around the Globe

  • Sungsu Park;Chanwoo Song;Daeok Youn
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.712-736
    • /
    • 2022
  • To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, sky-obscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.

A Study on Prevention of Fouling Formation by Reduction Reaction of CaSO4 in a Biomass Circulating Fluidized Bed Combustion (바이오매스 순환유동층 연소에서 CaSO4 환원반응에 의한 파울링 발생 방지 연구)

  • Seong-Ju Kim;Sung-Jin Park;Sung-Ho Jo;Se-Hwa Hong;Yong-Il Mun;Tae-Young Mun
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A large amount of carbon monoxide (CO) is generated in circulating fluidized bed combustion, the process whereby a hot cyclone separates unburned fuel. However, calcium sulfate (CaSO4), when combined with a high CO content, can cause fouling on the surface of the steam tube installed inside the integrated recycle heat exchangers (INTREX). In this study, CaSO4 decomposition was investigated using 0.2-3.2 vol.% CO and 1-3 vol.% oxygen (O2) at 850℃ for 20 min in a lab-scale fluidized bed reactor. The results show that CaSO4 decomposes into CaS and CaO when CO gas is supplied, and SO2 emissions increase from 135 ppm to 1021 ppm with increasing CO concentration. However, the O2 supply delayed SO2 emissions because the reaction between CO and O2 is faster than that of CaSO4; nevertheless, when supplied with CaCO3, the intermediate product, SO2 was significantly released, regardless of the CO and O2 supply. In addition, agglomerated solids and yellow sulfur power were observed after solid recovery, and the reactor distributor was corroded. Consequently, a sufficient O2 supply is important and can prevent fouling formation on the INTREX surface by suppressing CaSO4 degradation.