• Title/Summary/Keyword: Cycloheximide

Search Result 173, Processing Time 0.033 seconds

Isolation and Characterization of ACC Synthase Gene Family in Mung Bean (Vigna radiata L.): Differential Expression of the Three ACC Synthase enes in Response to Auxin and Brassinosteroid

  • Sunjoo Joo;Kim, Woo-Taek
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.61-71
    • /
    • 2000
  • By screening a cDNA library of auxin-treated mung bean (Vigna radiata L.) hypocotyls, we have isolated two full-length cDNA clones, pVR-ACS6 and pVR-ACS7, for 1-aminocyclopropane-1-carboxylate (ACC) synthase, the rate-limiting enzyme in the ethylene biosynthetic pathway. While PVR-ACS6 corresponds to the previously identified PCR fragment pMBA1, pVR-ACS7 is a new cDNA clone. A comparison of deduced amino acid sequences among auxin-induced ACC synthases reveal that these enzymes share a high degree of homology (65-75%) to VR-ACS6 and VR-ACS7 polypeptides, but only about 50% to VR-ACS1 polypeptide. ACS6 and ACS7 are specifically induced by auxin, while ACS1 is induced by cycloheximide, and to lesser extent by excision and auxin treatment. Results from nuclear run-on transcription assay and RNA gel blot studies revealed that all three genes were transcriptionally active displaying unique patterns of induction by IAA and various hormones in etiolated hypocotyls. Particularly, 24-epibrassinolide (BR), an active brassinosteroid, specifically enhanced the expression of VR-ACS7 by distinct temporal induction mechanism compared to that of IAA. In addition, BR synergistically increased the IAA-induced VR-ACS6 and VR-ACS7 transcript levels, while it effectively abolished both the IAA- and kinetin-induced accumulation of VR-ACS1 mRNA. In light-grown plants, VR-ACS1 was induced by IAA in roots, whereas W-ACS6 in epicotyls. IAA- and BR-treatments were not able to increase the VR-ACS7 transcript in the light-grown tissues. These results indicate that the expression of ACC synthase multigene family is regulated by complex hormonal and developmental networks in a gene- and tissue-specific manner in mung bean plants. The VR-ACS7 gene was isolated, and chimeric fusion between the 2.4 kb 5'-upstream region and the $\beta$-glucuronidase (GUS) reporter gene was constructed and introduced into Nicotiana tobacum. Analysis of transgenic tobacco plants revealed the VR-ACS7 promoter-driven GUS activity at a highly localized region of the hypocotyl-root junction of control seedlings, while a marked induction of GUS activity was detected only in the hypocotyl region of the IAA-treated transgenic seedlings where rapid cell elongation occurs. Although there was a modest synergistic effect of BR on the IAA-induced GUS activity, BR alone failed to increase the GUS activity, suggesting that induction of VR-ACS7 occurs via separate signaling pathways in response to IAA and BR.

  • PDF

Activation and In Vitro Development of Porcine Oocytes Treated with Ethanol, $Ca^{2+}-Ionophore$ and Strontium (Ethanol, $Ca^{2+}-Ionophore$ 및 Strontium이 돼지 난자의 활성화와 체외 발달에 미치는 영향)

  • Ahn, H.J.;Lee, J.W.;Kang, M.J.;Moon, S.J.
    • Journal of Embryo Transfer
    • /
    • v.22 no.1
    • /
    • pp.75-80
    • /
    • 2007
  • The objective of this study was to examine the optimal concentration and the exposure time of ethanol, Ca-ionophore, and strontium to achieve massive recipient oocytes in porcine. The cleavage (51.4% vs. $21.3{\sim}44.3%$) and embryo development rates (45% vs. $13.3{\sim}29.9%$) were significantly higher (p.0.05) in oocytes treated with 10% ethanol for 10 min than other treatments. The oocytes treated with 25mM Ca-ionophore for a minimum of 2min and 20mM strontium for a minimum of 6h showed significantly higher cleavage and embryo development rates than those of other treatments (P<0.05). Cleavage rate with duplicated ethanol treatment was significantly lower than those with ethanol alone (P<0.05). The cleavage rate and embryo development rates were significantly lower in duplicated strontium treatment than those in both alone and combination (P<0.05). But the cleavage and embryo development rates in treatment with Ca-ionophore were significantly higher in combined treatment (Ca-ionophore and cycloheximide) than those in single or duplicated treatment (P<0.05). These results might induce establishment of the optimal concentration and the exposure time on activation media to build up activation condition of porcine oocytes.

Effect of $Ca^{2+}$ Concentration in Fusion Medium on the Fusion, Nuclear Morphology and Development of Bovine Somatic Cell Nuclear Transfer Embryos (세포 융합액 중의$Ca^{2+}$ 농도가 소 체세포 핵이식란의 융합, 핵형 및 체외발육에 미치는 영향)

  • 조재원;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • This study was conducted to investigate the effect of $Ca^{2+}$ concentration in fusion medium on the fusion, nuclear morphology and the development of bovine somatic cell nuclear transfer embryos. Bovine skin cells were transferred into an enucleated oocyte and fused with cytoplasm in the fusion medium containing with 0.05 to 1.0 mM Cacl$_2$. Nuclear transfer embryos were activated with a combination of A23187 and cycloheximide. Nuclear transfer embryos were fixed at 3 h after fusion or cultured for 7 ~8 days. Fusion rate was significantly (P<0.01) increased by increasing the $Ca^{2+}$ concentrations in the fusion medium from 0.05 mM (56.6%) to 0.5 mM (50.1%) and 1.0 mM (84.3%). More than 80% of reconstituted embryos underwent premature chromosome condensation (PCC) with 0.05, 0.1 mM CaCl$_2$, whereas 54.5% and 59.3% of embryos formed pronucleus (PN) directly without PCC in the 0.5 and 1.0 mM CaCl$_2$, groups. Blastocyst formation rates were significantly (P<0.05) different between 0.1 mM and 1.0 mM CaCl$_2$groups. From the present result, it is suggested that the elevated $Ca^{2+}$ concentrations in fusion medium can enhance the fusion and blastocyst formation rates of bovine nuclear transfer embryos.bryos.

Effect of Leptin on the Expression of Lipopolysaccharide-Induced Chemokine KC mRNA in the Mouse Peritoneal Macrophages

  • Lee, Dong-Eun;Kim, Hyo-Young;Song, In-Hwan;Kim, Sung-Kwang;Seul, Jung-Hyun;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.722-729
    • /
    • 2004
  • Leptin is an adipocyte-secreted hormone and its plasma levels correlate with total body fat mass, however, it also plays a regulatory role in immunity, inflammation, and hematopoiesis. Chemokine is known as a chemoattractant cytokine in inflammatory reaction, but its role in leptin reaction has not been well studied. In this study, the direct effect of leptin on the expression of chemokine mRNAs and lipopolysaccharide (LPS)-induced chemokine KC mRNA in mouse peritoneal macrophages was investigated. Leptin did not induce the expression of lymphotactin, RANTES, eotaxin, MIP-1$\beta$, MIP-1$\alpha$, MIP-2, MCP-1, IP-10, TCA-3, and KC mRNA in mouse peritoneal macrophages, and had no direct effect on the expression of these LPS-induced chemokine mRNAs except KC mRNA. The synergistic effect of leptin on the expression of LPS-induced KC mRNA occurred late in the time course of response to LPS. The increased expressions of Ob-Rb mRNA and leptin receptor protein were detected during the LPS treatment. Leptin produced a substantial increase in the stability of the LPS-induced KC mRNA, and the synergistic effect of leptin on LPS-induced KC mRNA expression was further augmented by cycloheximide (CHX). Pyrrolidine dithiocarbamate (PDTC) did not block the synergistic effect of leptin on LPS-induced KC mRNA expression in mouse peritoneal macrophages. These data suggest that although leptin has no direct effect on the expression of lymphotactin, RANTES, eotaxin, MIP-1$\beta$, MIP-1$\alpha$, MIP-2, MCP-1, IP-10, TCA-3, and KC mRNA in mouse peritoneal macrophages, the synergistic effect of leptin on the expression of LPS-induced KC mRNA has the possibility that LPS might induce the expression of the Ob-Rb receptor or an unknown gene(s) that sensitizes macrophages to the synergistic function of leptin. Therefore, further studies are necessary to examine leptin as a regulatory factor of chemokine production.

Brief low [Mg2+]o-induced Ca2+ spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons

  • Kim, Hee Jung;Yang, Ji Seon;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • Reducing $[Mg^{2+}]_o$ to 0.1 mM can evoke repetitive $[Ca^{2+}]_i$ spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM $[Mg^{2+}]_o$ are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether $Ca^{2+}$ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM $[Mg^{2+}]_o$ for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type $Ca^{2+}$ channel antagonist nimodipine, which blocked 0.1 mM $[Mg^{2+}]_o$-induced $[Ca^{2+}]_i$ spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the $[Ca^{2+}]_i$ spikes. The intracellular $Ca^{2+}$ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. While $G{\ddot{o}}6976$, a specific inhibitor of $PKC{\alpha}$ had no effect on the tolerance, both the $PKC{\varepsilon}$ translocation inhibitor and the $PKC{\zeta}$ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low $[Mg^{2+}]_o$ preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the $[Ca^{2+}]_i$ spike-induced activation of $PKC{\varepsilon}$ and $PKC{\xi}$, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Development of Chimeric Embryos Aggregated with Blastomeres from Parthenogenetic and in vitro Fertilized Bovine Embryos (소의 단위 발생란과 체외수정란 유래의 할구 응집에 의한 키메라 수정란(Chimeric Embryo)의 발달)

  • E. H. Yeao;Kim, Y. S.;Lee, S. L.;T. Y. Kang;D. O. Kwack;Lee, H. J.;S. Y. Choe
    • Journal of Embryo Transfer
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 2003
  • 발생학에서 키메라(chimera)는 2개 이상의 다른 유전자형의 세포, 또는 다른 종의 세포로부터 만들어진 1개의 생물개체를 뜻하는 말로, 이는 초기 수정란의 발달과 포유류의 분화를 연구하는데 이용되고 있다. 키메라를 만드는 방법에는 할구와 내세포괴를 응집시키는 방법과 배반포 내에 여러 종류의 세포를 주입하는 방법이 있다 본 실험에서는 서로 다른 두 가지 방법의 활성화 처리법, 즉, ionomycin 처리 후 Cycloheximide (CHX) 또는 6-Dimetylaminopurine (6-DMAP)에 따른 단위 발생란의 분할과 단계적인 발달율을 살펴 보고자 하였으며, 서로 다른 방법에 의해 생산된 단위발생란 유래의 할구와 체외수정란 유래 할구를 응집하여 키메라 수정란(chimeric embryo)를 만든 후 체외수정란과 발달율을 비교해 보았다. 도축장 유래의 난소에서 난자를 채취하여 체외에서 22~24시간 성숙시킨 후 난구세포를 제거하고 metaphase II 단계의 난자를 5 $\mu$M ionomycin에 4분간 처리한 후, 10 $\mu$g/ml CHX/5 $\mu$g/ml cytochalasin B (CCB)에 5시간 또는 1.9 mM 6-DMAP에 4시간 처리하여 분할율과 배반포기 발달율을 비교 조사하였다. 난자 분할율에서는 체외수정란과 6-DMAP처리 단위 발생란에서 각각가 83.7 와 85.5%로 CHX/CCB 처리 단위발생란의 57.9%보다 유의적으로 높게(P<0.05) 나타났으며, 배반포기 발달율에 있어서는 체외수정란의 발달율이 27.8%로 6-DMAP처리 활성란 12.3%와 CHX/CCB 처리 활성란 5.3%보다 유의적으로 높게 (P<0.05) 나타났다. 키메라 수정란(chimeric embryo)은 서로 다른 두 가지 처리에 의해 생산된 단위발생란의 할구 2개와 체외수정란 유래의 할구 2개를 빈 투명대 내에서 응집시켜 제조하였다 빈 투명대 내에 키메라 수정란(chimeric embryos)의 8 세포기까지의 발달율은, 체외 수정란 할구 2개와 CHX/CCB 처리에 의한 할구 2개를 응집한 그룹은 46.1%, 체외 수정란 할구와 6-DMAP 유래 할구 2개를 응집한 그룹은 52.8% 였으며, handled control은 54.7%로 체외 수정란 77.7%에 비해 유의적으로 낮게(P<0.05) 나타났다. 배반포기까지의 발달율은 체외 수정란과 CHX/CCB에 의해 생산된 키메라 수정란(chimeric embryo)은 12.8%, 체외 수정란과 6-DMAP에 의한 키메라 수정란(chimeric embryo)은 18.8%로 handled control의 21.4%에 비해 유의적으로 낮았으며(P<0.05), 이들 키메라 수정란(chimeric embryos)은 체외 수정란의 34.9%에 비해 유의적으로 낮게(P<0.05)나타났다. 6-DMAP 처리 단위발생이 유기된 수정란 할구 2개와 체외수정란의 할구 2개의 응집에 의한 키메라 수정란(chimeric embryos)의 발달율이 CHX/CCB와 체외수정란의 응집에 의한 키메라 수정란(chimeric embryos)에 비해 다소 높게 나타났으나, 유의적인 차이는 없었다. 본 실험의 결과 서로 다른 방법에 의한 단위 발생란 유래의 할구와 체외 수정란 유래의 할구가 응집에 의한 재조합이 가능하였고 이들을 체외에서 배양하여 배반포기의 수정란까지 발달시켰다.

Dexamethasone Induces $Fc{\gamma}RIIb$ Expression in RBL-2H3 Cells

  • Silwal, Prashanta;Lee, Mi-Nam;Lee, Choong-Jae;Hong, Jang-Hee;NamGung, Uk;Lee, Zee-Won;Kim, Jinhyun;Lim, Kyu;Kweon, Gi Ryang;Park, Jong Il;Park, Seung Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.393-398
    • /
    • 2012
  • Mast cells are involved in allergic responses, protection against pathogens and autoimmune diseases. Dexamethasone (Dex) and other glucocorticoids suppress $Fc{\varepsilon}RI$-mediated release of inflammatory mediators from mast cells. The inhibition mechanisms were mainly investigated on the downstream signaling of Fc receptor activations. Here, we addressed the effects of Dex on Fc receptor expressions in rat mast cell line RBL-2H3. We measured mRNA levels of Fc receptors by real-time PCR. As expected, Dex decreased the mRNA levels of activating Fc receptor for IgE ($Fc{\varepsilon}R$) I and increased the mRNA levels of the inhibitory Fc receptor for IgG $Fc{\gamma}RIIb$. Interestingly, Dex stimulated transcriptions of other activating receptors such as Fc receptors for IgG ($Fc{\gamma}R$) I and $Fc{\gamma}RIII$. To investigate the mechanisms underlying transcriptional regulation, we employed a transcription inhibitor actinomycin D and a translation inhibitor cycloheximide. The inhibition of protein synthesis without Dex treatment enhanced $Fc{\gamma}RI$ and $Fc{\gamma}RIII$ mRNA levels potently, while $Fc{\varepsilon}RI$ and $Fc{\gamma}RIIb$ were minimally affected. Next, we examined expressions of the Fc receptors on cell surfaces by the flow cytometric method. Only $Fc{\gamma}RIIb$ protein expression was significantly enhanced by Dex treatment, while $Fc{\gamma}RI$, $Fc{\gamma}RIII$ and $Fc{\varepsilon}RI$ expression levels were marginally changed. Our data showed, for the first time, that Dex regulates Fc receptor expressions resulting in augmentation of the inhibitory receptor $Fc{\gamma}RIIb$.

Inhibitory Effect of Phorbol 12-Myristate 13-Acetate on NO Production Induced by Interleukin-1 beta in Aortic Vascular Smooth Muscle Cells of Rats (혈관평활근세포에서 Phorbol 12-Myristate 13-Acetate의 전처리가 Interleukin-1β에 의한 Nitrite생성에 미치는 영향)

  • 윤병헌;김인겸;박태규;김중영
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.441-447
    • /
    • 2003
  • To examine the role of protein kinase C (PKC) in regulation of interleukin-1 beta (IL-1$\beta$)-induced iNOS expression, IL-1$\beta$-induced nitrite production was observed in cultured vascular smooth muscle (VSM) cells pretreated with phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-butyrate (PDB) as PKC activator; 4$\alpha$-phorbol-didecanoate (PDD) as PKC non-activator. Nitrite production induced by IL-1$\beta$ was increased by the presence of increasing concentration of PMA ranging from 2 to 200 nM. However, in VSM cells pretreated with PMA and PDB, IL-1$\beta$-induced $NO_2$ production was decreased in proportion to the duration of pretreatment, and most significantly decreased in pretreatment time of 24 hours. Using RT-PCR method, the expression of iNOS mRNA induced by IL-1$\beta$ was decreased in VSM cells pretreated with PMA 200 nM for 24 hours. These results suggest that decrease in IL-I$\beta$-induced nitrite production by the pretreatment of PMA result from inhibition of iNOS expression and the inhibition related to PMA-induced PKC down-regulation.

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF