• Title/Summary/Keyword: Cyclohexane propionic acid

Search Result 2, Processing Time 0.021 seconds

Influence of Alkyl Chain Length on Fragmentations and Ion-Molecule Reactions of Ionized c-C6H11-(CH2)nCO2H

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1711-1716
    • /
    • 2005
  • Fragmentations and ion-molecule reactions of ionized cyclohexane propionic acid and cyclohexane butyric acid were studied using FTMS and theoretical calculations. The difference in bond dissociation depending on the aliphatic chain length was investigated and mechanisms for the possible rearrangements depending on the aliphatic carbon length were suggested. The most abundant fragment ion of the ionized cyclohexane propionic acid was c-$C_6H_{11}CH_2\;^+$ formed from the molecular ion by the direct C-C bond cleavage, while that of the ionized cyclohexane butyric acid was c-$C_6H_9C(OH)=OH^+$ formed by rearrangement of the molecular ion from the acid to diol form and loss of propyl radical. Stabilities of the radical and distonic ions of $C_nH_{2n}O^{+\bullet}$ formed from the molecular ion were compared. Protonated molecules were dissociated into smaller ions by losing one or two water molecules. The $[nM + H]^+$, $[nM + H - H_2O]^+$, and $[nM + H - 2H_2O]^+$ with n = 2 and 3 were generated by solvation with the neutral molecules in the ICR cell at long ion trapping time.

Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae

  • Tako, Miklos;Kotogan, Alexandra;Papp, Tamas;Kadaikunnan, Shine;Alharbi, Naiyf S.;Vagvolgyi, Csaba
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.277-288
    • /
    • 2017
  • Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p-Nitrophenyl palmitate (pNPP) hydrolysis was maximal at $40^{\circ}C$ and pH 7.0 for the R. miehei lipase, and at $30^{\circ}C$ and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to pNPP, but the $V_{max}$ of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM $Hg^{2+}$, $Zn^{2+}$, or $Mn^{2+}$, 10 mM N-bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n-hexane, cyclohexane, n-heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the pNPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p-nitrophenyl (pNP) esters with C8-C16 acids, exhibiting maximum activity towards pNP-caprylate (R. miehei) and pNP-dodecanoate (Rh. oryzae). The purified lipases are promising candidates for various biotechnological applications.