• Title/Summary/Keyword: Cyclodextrin glucanotransferase(CGTase)

Search Result 80, Processing Time 0.022 seconds

Display of Bacillus macerans Cyclodextrin Glucanotransferase on Cell Surface of Saccharomyces cerevisiae

  • Kim, Kyu-Yong;Kim, Myoun-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.411-416
    • /
    • 2002
  • Bacillus macerans cyclodextrin glucanotransferase (CGTase) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein, Aga1p. The surface display of CGTase was confirmed by immunofluorescence microscopy and its enzymatic ability to form ${\alpha}$-cyclodextrin from starch. The maximum surface-display of CGTase was obtained by growing recombinant S. cerevisiae at $20^{\circ}C$ and pH 6.0. S. cerevisiae cells displaying CGTase on their surface consumed glucose and maltose, inhibitory byproducts of the CGTase reaction, to enhance the purity of produced cyclodextrins. Accordingly, the experimental results described herein suggest a possibility of using the recombinant S.cerevisiae anchored with bacterial CGTase on the cell surface as a whole-cell biocatalyst for the production of cyclodextrin.

Synthesis of Transglucosylated Xylitol Using Cyclodextrin Glucanotransferase and Its Stimulating Effect on the Growth of Bifidobacterium. (Cyclodextrin Glucanotransferase를 이용한 당전이 Xylitol의 합성과 비피더스균 생육증식 효과)

  • 김태권;박동찬;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.442-449
    • /
    • 1998
  • Several transglucosylated xylitols were synthesized using intermolecular transglucosylation reaction of cyclodextrin glucanotransferase (CGTase) and their bifidogenic effects were investigated. The CGTase from Thermoanaerobacter sp. showed the highest transglycosylation activity on xylitol compared to those obtained from other strains. Extruded starch was identified to be the most suitable glucosyl donor for transglucosylation reaction on xylitol molecule by CGTase. The optimum reaction conditions for transglucosylation were also studied using extruded starch as a glucosyl donor. The transglucosylated xylitols were purified by activated carbon column chromatography with ethanol gradient elution from 0 to 18%, and their chemical structures were analyzed by fast atom bombardment mass spectrometer, $\^$13/C-nuclear magnetic resonance spectrometer, and enzyme digestion method. Two transglucosylated xylitol, F-I and F-II, which had one or two glucose molecules attached to maternal xylitol by ${\alpha}$-1,4-linkage, were mainly obtained. F-II showed increased stimulation effect on the growth of Bifidobacterium breve compared to xylitol, indicating the possibility utilized as a new functional alternative sweetners having bifidogenic effects.

  • PDF

Selection and Characterization of Catabolite Repression Resistant Mutant of Bacillus firmus var. alkalophilus Producing Cyclodextrin Glucanotransferase

  • Do, Eun-Ju;Shin, Hyun-Dong;Kim, Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.78-85
    • /
    • 1993
  • In order to elucidate the mechanism which regulates the production of cyclodextrin glucanotransferase (CGTase) and to achieve overproduction of CGTase by releasing catabolite (glucose) repression, several catabolite repression resistant mutants were selected from newly screened Bacillus firmus var. alkalophilus H609, after NTG (N-methyl-N -nitro-N-nitrosoguanidine) treatment, using 2-deoxyglucose as a nonmetabolizable analog of catabolite glucose and as a selection marker. Five catabolite repression resistant mutants were selected from about 30, 000 2-deoxyglucose resistant colonies. Relative catabolite repression indices of the selected mutants were in the range of 8~80% assuming 100% for parent strain. The amount of CGTase produced by the mutant strain CR41, which was 250 units/ml, was three times larger than that produced by its parent strain. The mutation seems to have occurred in the regulatory region of CGTase gene and not in the structural region or the glucose transporting system in cell membrane. The enzymatic properties of CGTase excreted from parent and mutant strains were also compared.

  • PDF

Enhancement of enzymatic activity of ${\beta}-cyclodextrin$ glucanotransferase from Bacillus firmus var. alkalophilus by site-directed mutagenesis

  • Lee, Gwang-U;Sin, Hyeon-Dong;Lee, Yong-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.656-659
    • /
    • 2001
  • Cyclodextrin glucanotransferase (CGTase) (EC 2.4.1.19) use starch to produce cyclic maltooligosaccharides (cyclodextrins, CDs) which are of interest in various applications. To obtain a novel CGTase having high CD-forming activity, ${\beta}-cyclodextrin$ glucanotransferase $({\beta}-CGTase)$ from Bacillus firmus var. alkalophilus was modified through site-directed mutagenesis and constructed five mutants, H59T, H59Q, Y96M, 9O-PPI-93, and ${\Delta}(148-154)D$, respectively. Y96M and ${\Delta}(148-154)D$ showed much higher level of conversion yields of starch into CDs from 28.6% to about 39% compared to wild-type ${\beta}-CGTase$, respectively, but 90-PPI-93 maintained similar convesion yields of starch to CDs. And their ${\beta}-CD$ ratios to total CDs were not changed and maintained, and convesion yields to linear maltooligosaccharides of all mutants were not changed significantly. These results indicates that five mutations of ${\beta}-CGTase$ from Bacillus firmus var. alkalophilus appears to be important roles for increase of overall CD production rather than change of its product specificity, especially.

  • PDF

Transglycosylation Reaction of Cyclodextrin Glucanotransferase in the Attrition Coupled Reaction System using Raw Starch as a Donor (분쇄마찰매체 불균일상 효소반응계를 활용한 생전분을 당공여체로 하는 Cyclodextrin Glucanotransferase의 당전이 반응)

  • 이용현;백승걸;박동찬;신현동
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.461-467
    • /
    • 1993
  • Transglycosylation reaction of cyclodextrin glucanotransferase (CGTase) was analyzed in the attrition coupled heterogeneous reaction system using raw starch as a donor` and mono-, di-saccharide, and glycoside as acceptors. For transglycosylation reaction of stevioside, the transglycosylation rate was similar and the transglycosylation yield was increased compare with conventional process using liquefied starch as the donor. Also the accumulation of maltooligosaccharides in reaction mixture was minimized.

  • PDF

Purification and Immobilization of Cyclodextrin glucanotransferase from recombinant Bacillus subtilis

  • Seo, Hyo-Jin;Kim, Yeong-Hwa;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.671-674
    • /
    • 2001
  • Cyclodextrin glucanotransferase(CGTase) derived from recombinant Bacillus subtilis was partial purified and concentrated by ultrafiltration. The prepared CGTase were immobilized on various matrices by ionic interaction or covalent bond. CGTase covalently bound on CNBr-activated sepharose 4B were identified to be the highest immobilization activity among various immobilization methods. The optimum conditions for CGTase immobilization were determined; $30^{\circ}C$, 6Orpm, using O.2g CNBr-activated sepharose 4B in pH 6.0 phosphate buffer and 9hr immobilization.

  • PDF

Cyclodextrin Glucanotransferase와 Cyclodextrinase를 생산하는 Bacillus 속 세균의 분리와 그 효소들의 특성

  • Kwon, Hyun-Ju;Nam, Soo-Wan;Kim, Kwang-Hyun;Kwak, Young-Gyu;Kim, Byung-Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.274-281
    • /
    • 1996
  • A bacterium producing Cyclodextrin Glucanotransferase (CGTase) and Cyclodextrinase (CDase) was isolated from soil, and named as Bacillus stearothermophilus KJ16. The growth of the isolated strain occurred in two steps, and syntheses of CGTase and CDase were dependedt on the growth cycle of the cell. CGTase was constitutively synthesized during the 1st growing phase, while CDase was synthesized inducibly during the 2nd growing phase. When the midium pH was controlled at 7.0 the maximum enzyme activities of CGTase and CDase were increased by 12-fold (1300 mU/ml) and 2-fold (225 mU/ml), respectively, compared with the pH-uncontrolled batch culture. The CGTase of the isolate converted soluble starch to CDs with the ratio of $\alpha$-CD:$\beta$-CD:$\gamma$-CD=42:46:12 at $55^{\circ}C$.The optimal pH and temperature of CGTase were 6.0 and $60^{\circ}C$, respectively and the optimal pH and temperature of CDase were 6.0 and $55^{\circ}C$. The molecular weights of the purified CGTase and CDase were estimated to be 65, 000 and 68, 000 dalton, respectively. Among several substrates, $\gamma$-CD was most rapidly hydrolyzed by the purified CDase.

  • PDF

The Roles of Tryptophan and Histidine Residues in the Catalytic Activities $\beta$-Cyclodextrin Glucanotransferase from Bacillus firmus var. alkalophilus

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • In order to investigate the critical amino acid residues involved in the catalytic activities of $\beta$-cyclodextrin glucanotransferase ($\beta$-CGTase) excreted by Bacillus firmus var. alkalophilus, the amino acid residues in $\beta$-CGTase were modified by various site-specific amino acid modifying reagents. The cyclizing and amylolytic activities of $\beta$-CGTase were all seriously reduced after treatment with Woodward's reagent K (WRK) modifying aspartic/glutamic acid, N-bromosuccinimde (NBS) modifying tryptophan, and diethylpyrocarbonate (DEPC) modifying histidine residues. The roles of tryptophan and histidine residues in $\beta$-CGTase were further investigated by measuring the protection effect of various substrates during chemical modification, comparing protein mobility in native and affinity polyacrylamide gel electrophoresis containing soluble starch, and comparing the $K_m$ and $V_{max}$ values of native and modified enzymes. Tryptophan residues were identified as affecting substrate-binding ability rather than influencing catalytic activities. On the other hand, histidine residues influenced catalytic ability rather than substrate-binding ability, plus histidine modification had an effect on shifting the optimum pH and pH stability.

  • PDF

Bacillus sp. KJ16에서 Cyclodextrin Gluanotransferase와 Cyclodextrinase 생산의 Catabolite Repression

  • 김병우;권현주;이경희
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.137-142
    • /
    • 1996
  • The biosynthesis and catabolite repression of cyclodextrin glucanotransferase(CGTase) and cyclodextrinase(CDase) were studied in Bacillus sp. KJI6. In accompanying to the cell growth, CGTase was synthesized during early growth phase (20h culture) and CDase was synthesized during late growth phase (60h culture). Synthesis of CGTase was rather constitutive than that of CDase in the absence or presence of carbon source. Production of CDase was strongly stimulated by amylopectin and $\gamma$-CD medium (about 6 times), but CGTase synthesis was slightly increased (about 1.3 times). Easily metabolizable carbohydrates such as D-glucose, D- fructose and D-mannose completely repressed the expression of CDase, whereas their repressive effect to CGTase synthesis was relatively negligible. By addition of 10 mM cAMP, any significant effect on the synthesis of the two enzymes was not observed. Hardly metabolizable glucose analogues such as 2-deoxy-D-glucose and 3-0-methyl-D-glucopyranose also did not show any repression on the syntheses of CGTase and CDase. This indicates that D-glucose has to be metabolized to exert its repressive effect. With these results, it seems likely that the biosynthesis of CGTase and CDase are regulated by the catabolite repression due to unknown metabolite(s) of EM pathway.

  • PDF

Expression of Bacillus macerans Cyclodextrin Glucanotransferase on the Cell Surface of Saccharomyces cerevisiae.

  • Kim, Gyu-Yong;Kim, Myeong-Dong;Han, Nam-Su;Seo, Jin-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.191-193
    • /
    • 2000
  • A whole-cell biocatalyst was constructed by immobilizing an enzyme on the surface of the yeast Saccharomyces cerevisiae. The gene encoding Bacillus macerans cyclodextrin glucanotransferase(CGTase) was fused with the AGA2 gene encoding a small peptide disulfide-linked to the aga1, a cell wall protein of a-agglutinin. The plasmid was introduced S. cerevisiae and expressed in the medium consisting of 10g/L yeast extract, 20g/L peptone, and 20g/L galactose. The activity was detected with the formation of cyclodextrin(CD) from 10g/L soluble starch. Surface display of CGTase was also verified with the halo-test, flow cytometry, and immunofluorescence microscopy. The recombinant S. cerevisiae produced ${\alpha}-cyclodextrin$ more efficiently than the free CGTase by simultaneous fermentation and cyclization as yeast consumes glucose and maltose which are inhibitors for CD synthesis.

  • PDF