• 제목/요약/키워드: Cyclic voltammetric curve

검색결과 7건 처리시간 0.02초

A New Accurate Equation for Estimating the Baseline for the Reversal Peak of a Cyclic Voltammogram

  • Oh, Sung-Hoon;Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.293-297
    • /
    • 2016
  • Here we propose a new equation by which we can estimate the baseline for measuring the peak current of the reverse curve in a cyclic voltammogram. A similar equation already exists, but it is a linear algebraic equation that over-simplifies the voltammetric curve and may cause unpredictable errors when calculating the baseline. In our study, we find a quadratic algebraic equation that acceptably reflects the complexity included in a voltammetric curve. The equation is obtained from a laborious numerical analysis of cyclic voltammetry simulations using the finite element method, and not from the closed form of the mathematical equation. This equation is utilized to provide a virtual baseline current for the reverse peak current. We compare the results obtained using the old linear and new quadratic equations with the theoretical values in terms of errors to ascertain the degree to which accuracy is improved by the new equation. Finally, the equations are applied to practical cyclic voltammograms of ferricyanide in order to confirm the improved accuracy.

구리의 내식성에 미치는 어닐링 열처리의 영향 (Effect of Annealing Heat Treatment to Corrosion Resistance of a Copper)

  • 김진경;문경만;이진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.654-661
    • /
    • 2005
  • Copper is a well known alloying element that is used to improve the resistance to general corrosion of stainless steel And also Cu cation have the anti-fouling effect to inhibit adhesion of the marine algae and shellfish to the surface of heat exchanger cooling pipe or outside wall of the ship, Therefore there are some anti-fouling methods such as anti-fouling Paint mixed with copper oxide or MGPS(Marine Growth Preventing System) by using Cu cation dissolved to the sea wather solution. Cu cation can be dissolved spontaneously by galvanic current due to Potential difference between Cu and cooling pipe of heat exchanger with Ti material, which may be one of the anti-fouling designs. In this study the effect of annealing heat treatment to galvanic current and Polarization behavior was investigated with a electrochemical points of view such as measurement of corrosion Potential, anodic polarization curve. cyclic voltammetric curve, galvanic current etc The grain size of the surface in annealed at $700^{\circ}C$ was the smallest than that of other annealing temperatures. and also the corrosion Potential showed more positive potential than other annealing temperatures. The galvanic current between Ti and Cu with annealed at $700^{\circ}C$ was the largest value in the case of static condition. However its value in the case of flow condition was the smallest than the other temperatures. Therefore in order to increase anti-fouling effect by Cu cation, the optimum annealing temperature in static condition of sea water is $700^{\circ}C$, however non- heat treated specimen in the case of flow condition may be desirable.

세포탁심나트륨과 세프트리악손나트륨의 전기화학 거동 및 네모파 전압전류법 정량 (Electrochemical Behaviors and Square Wave Voltammetric Determinations of Cefotaxime Sodium and Ceftriaxone Sodium)

  • 김민경;한영희
    • 약학회지
    • /
    • 제50권1호
    • /
    • pp.40-46
    • /
    • 2006
  • Square wave voltammetric (SWV) and cyclic voltammetric (CV) behaviors of cefotaxime sodium and ceftriaxone sodium have been investigated in the potential range between -0.10 V and -1.30 V using the phosphate buffers of various pH values ($2.00{\sim}9.10$). Two main peaks observed were irreversible and protons were involved in their electrochemical reductions. The first peaks of these cephalosporin antibiotics are due to the reduction of the azomethine double bond in the methoxyimino group of the side chain at position 7. The second peaks of cefotaxime sodium and ceftriaxone sodium are related to the reductions of the ${\Delta}^3$ double bond and the dioxo moiety of the side chain at position 3, respectively. The calibration curve of cefotaxime sodium in the concentration range between $1.0{\times}10^{-7}M$ and $1.0{\times}10^{-5}M$ yielded the linearity with the correlation coefficient of 0.9998 when the first peak of the antibiotic in a phosphate buffer of pH 3.02 was measured at the conditions of frequency of 120 Hz and pulse height of 50 mV by SWV. The present fast, simple and accurate SWV assay method was applied to determine cefotaxime sodium in the commercial antibiotic powder of injection.

치과용 아말감의 산화환원에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON THE OXIDATION' AND REDUCTION OF DENTAL AMALGAM)

  • 이인복;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.431-445
    • /
    • 1993
  • The purpose of this study was to observe corrosion characteristics of six dental amalgams and was to analyse corrosion products electrochemically. After each amalgam alloy and Hg was triturated as the direction of the manufacturer by using mechanical amalgamator, the triturated mass was inserted into the cylinderical metal mold ($12{\times}10mm$) and was condensed with 160kg/$cm^2$ by using the hydrolic press. The specimen was removed from the mold and was stored at room temperature for 1 week, and was polished with amalgam polishing kit. The anodic and cathodic polarization curve was obtained by using cyclic voltammetric method with 3-electrode potentiostat in saline for each amalgam and Ag, Sn, Cu plate specimen at $37{\pm}0.5^{\circ}C$. The potential sweep range was -1.7V~0. 4V(vs SCE) in working electrode and scan rate was 50mV/s and the exposed surface area of each specimen to the electrolytic solution was $0.79cm^2$. The results were as follows. 1. In anodic-cathodic polarization curve of amalgam specimens, two anodic current rising areas and two cathodic current peaks were obtained at the low Cu amalgam(CF, CS) specimen and three anodic current rising areas and three cathodic current peaks were obtained at the high Cu amalgam (TY, DS, HV) specimen. 2. As this compared with the anodic and cathodic current peak potentials of Sn, Cu and Ag specimen, the first cathodic current peak I c was caused by the reduction of divalent tin salt, second cathodic current peak IIIc results from the reduction of quadravalent tin salt, and third cathodic current peak me results from the reduction of copper salt. 3. As reverse potential sweeping was done repeatedly, anodic current was decreased slightly in all amalgam specimens.

  • PDF

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

  • Yu, Joonhee;Kim, Tae Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.274-281
    • /
    • 2017
  • This paper describes the simple fabrication of an electrode modified with electrochemically reduced graphene oxide (ERGO) for the simultaneous electrocatalytic detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). ERGO was formed on a glassy carbon (GC) electrode by the reduction of graphene oxide (GO) using linear sweep voltammetry. The ERGO/GC electrode was formed by subjecting a GO solution ($1mg\;mL^{-1}$ in 0.25 M NaCl) to a linear scan from 0 V to -1.4 V at a scan rate of $20mVs^{-1}$. The ERGO/GC electrode was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical performance of the ERGO/GC electrode with respect to the detection of DA, AA, and UA in 0.1 M PBS (pH 7.4) was investigated by differential pulse voltammetry (DPV) and amperometry. The ERGO/GC electrode exhibited three well-separated voltammetric peaks and increased oxidation currents during the DPV measurements, thus allowing for the simultaneous and individual detection of DA, AA, and UA. The detection limits for DA, AA, and UA were found to be 0.46, 77, and $0.31{\mu}M$ respectively, using the amperometric i-t curve technique, with the S/N ratio being 3.

Nanogold-modified Carbon Paste Electrode for the Determination of Atenolol in Pharmaceutical Formulations and Urine by Voltammetric Methods

  • Behpour, M.;Honarmand, E.;Ghoreishi, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.845-849
    • /
    • 2010
  • A gold nanoparticles modified carbon paste electrode (GN-CPE) has been used for the determination of atenolol (ATN) in drug formulations by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronocoulometric methods. The results revealed that the modified electrode shows an electrocatalytic activity toward the anodic oxidation of atenolol by a marked enhancement in the current response in buffered solution at pH 10.0. The anodic peak potential shifts by -80.0 mV when compared with the potential using bare carbon paste electrde. A linear analytical curve was observed in the range of $1.96\;{\times}\;10^{-6}$ to $9.09\;{\times}\;10^{-4}\;mol\;L^{-1}$. The detection limit for this method is $7.3\;{\times}\;10^{-8}\;mol\;L^{-1}$. The method was then successfully applied to the determination of atenolol in tablets and human urine. The percent recoveries in urine ranged from 92.0 to 110.0%.