• Title/Summary/Keyword: Cyclic treatment

Search Result 406, Processing Time 0.024 seconds

Recovery of Copper, Reuse of $TiO_2$, and Assessment of Acute Toxicity in the Photocatalytic Oxidation of Cu(II)-EDTA (Cu(II)-EDTA 광촉매 산화반응에서의 구리회수, $TiO_2$ 재사용 및 처리수 독성평가)

  • Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.844-851
    • /
    • 2005
  • The purpose of this study was to determine feasibility of application of regenerated or recycled $TiO_2$ on the successive treatment of Cu(II)-EDTA. The recovery of copper, the reuse of $TiO_2$ and the assessment of acute toxicity was studied in the total eight successive photocatalytic reactions. Aqueous solution of $10^{-4}\;M$ Cu(II)-EDTA was treated using an illuminated $TiO_2$ at pH 6 in a circulating reactor. Two different procedures were applied in the reuse of $TiO_2$: i) recycle of $TiO_2$ without acid wash ii) regeneration of $TiO_2$ with acid wash to remove adsorbed copper in a previous experiment. The averaged decomplexation rate constant($k'_{obs}$) of Cu(II)-EDTA in recycle of $TiO_2$ without acid wash was approximately 45% less than that in regeneration of $TiO_2$ with acid wash. Removal of Cu(II) was near complete after 180 minutes in the total eight successive photocatalytic reactions using the regenerated $TiO_2$ after acid wash. In contrast, removal of Cu(II) was minimum at total fifth successive photocatalytic oxidation using the recycled $TiO_2$ without arid wash. The recovered $TiO_2$ was approximately 86% in average in each procedure. The recovered Cu(II) was 67.9% in average. The acute relative toxicity of the treated water rapidly declined at an initial reaction time up to 60 minutes but little declination was observed after 60 minutes due to little degradation of DOC. Relative toxicity of treated water using the recycled $TiO_2$ without acid wash we some what well correlated with the concentration of dissolved Cu(II). From this work, it is suggested that Cu(II)-EDTA can be effectively treated using an integrated cyclic photocatalytic oxidation with recovery of $TiO_2$ and Cu(II).

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma (미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과)

  • Nam, Jehyun;Kim, Eunkyung;Kim, Jinyoung;Jeong, Dawoom;Kim, Donguk;Kwak, Bomi;Kim, Sang-Woo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.

An Investigation of Glyceollin I's Inhibitory Effect on The Mammalian Adenylyl (글리세올린 I의 아데니닐 고리화 효소 활성 억제 효능과 결합 부위 비교 분석)

  • Kim, Dong-Chan;Kim, Nam Doo;Kim, Sung In;Jang, Chul-Soo;Kweon, Chang Oh;Kim, Byung Weon;Ryu, Jae-Ki;Kim, Hyun-Kyung;Lee, Suk Jun;Lee, Seungho;Kim, Dongjin
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.609-615
    • /
    • 2013
  • Glyceollin I has gained attention as a useful therapy for various dermatological diseases. However, the binding property of glyceollin I to the mammalian adenylyl cyclase (hereafter mAC), a critical target enzyme for the down-regulation of skin melanogenesis, has not been fully explored. To clarify the action mechanism between glyceollin I and mAC, we first investigated the molecular docking property of glyceollin I to mAC and compared with that of SQ22,536, a well-known mAC inhibitor, to mAC. Glyceollin I showed superiority by forming three hydrogen bonds with Asp 1018, Trp 1020, and Asn 1025, which exist in the catalytic site of mAC. However, SQ22,536 formed only two hydrogen bonds with Asp 1018 and Asn 1025. Secondly, we confirmed that glyceollin I effectively inhibits the formation of forskolin-induced cAMP and the phosphorylation of PKA from a cell-based assay. Long term treatment with glyceollin I had little effect on the cell viability. The findings of the present study also suggest that glyceollin I may be extended to be used as an effective inhibitor of hyperpigmentation.

A Randomized, Double-Blind, Placebo-Controlled Trial of Early Ursodeoxycholic Acid Administration for Prevention of Total Parenteral Nutrition-Induced Hepatobiliary Complications (총정맥영양법의 간담도 합병증에 대한 Ursodeoxycholic Acid 조기투여의 이중맹검 위약대조군 연구)

  • Choe, Yon-Ho;Beck, Nam-Sun;Kim, Ji-Hee;Lee, Suk-Hyang;Park, Tae-Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.5 no.2
    • /
    • pp.174-180
    • /
    • 2002
  • Purpose: Ursodeoxycholic acid (UDCA) is known to decrease hepatic injury by promoting the biliary secretion of retained toxic endogenous bile acids in hepatobiliary diseases complicated by total parenteral nutrition (TPN). However, most studies have focused on treatment for complications after TPN. We investigated the preventive role of early administration of UDCA in TPN-induced hepatobiliary complications by a randomized, double-blind, placebo-controlled trial. Methods: Between May 2000 and May 2002, thirteen patients, who were given TPN more than 10 days in the hospital, were assigned randomly to two groups. One was the case group (7 patients) who were given UDCA simultaneously with TPN regimen, and the other, the control group (6 patients) who were given placebo. Their age ranged from 1 day to 13 years. They were affected with diseases impossible for enteral nutrition, such as prematurity, cerebral palsy, chronic diarrhea, anorexia nervosa, pancreatitis, and cyclic vomiting. The duration of TPN ranged from 10 to 70 days. Hematologic parameters including liver function test were measured at regular intervals, and the duration, composition, administration rate, total calorie of TPN were recorded. The serum levels of total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase were compared between groups after cessation of the study. Results: The autoregressive coefficient of the control group was 0.4419 (p=0.0651) in bilirubin, -0.0431 (p=0.7923) in AST, 0.2398 (p=0.2416) in ALT, and 0.2459 (p=0.1922) in alkaline phosphatase by mixed procedure model when the parameters were referred to the case group. Conclusion: The serum level of total bilirubin did not increase in comparison with that of the control group, but statistically insignificant, when both TPN and UDCA were administered simultaneously from the beginning.

  • PDF

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells (코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가)

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.