• 제목/요약/키워드: Cyclic shear strength

검색결과 385건 처리시간 0.029초

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제14권6호
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

반복하중을 받는 강섬유보강 고강도 콘크리트 외측보-기둥 접합부의 거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Exterior Beam-Column Joints with Steel Fiber Reinforced High Strength Concrete Subjected to Cyclic Loads)

  • 한형섭;김명성;박인철;김윤일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.565-568
    • /
    • 1999
  • The objective of this study is to investigate the hysteretic behaviors of exterior beam-column joints with high strength concrete (f'c≒1000kg/$\textrm{cm}^2$) subjected to cyclic loads. Four exterior subassemblages scaled down about 60% were tested, whose variables were with/without shear reinforcements and with/without slab and spandrel beams. Hoop bars and hooked steel fibers were used as the shear reinforcements. The test results showed that using hooked steel fiber reinforced concrete with volume ratio 1.5% at beam-column joints was very effective to resist shear stress due to cyclic loads.

  • PDF

고강도콘크리트를 사용한 보-기둥 접합부의 전단강도 (Shear Strength of Beam-Column eoints Using High-Strength Concrete)

  • 장극관;서대원
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.53-62
    • /
    • 2000
  • Under severe lateral loads, ductile moments-resisting reinforced concrete frames will be subjected to large loads and displacements. Thus, large deformation and shear stree are occurred at the beam-column joints which are the most critical region in ductile moments-resisting system. The purpose of this study was to investigate the shear strength of beam-column connection using high strength concrete. Four subassemblies were designed 2/3 scale of read structures and tested. The obtained results are as follows. 1) The transverse beams increase the shear resistance and ductility of joint, 2) The slab was contributed to increase of the flexural capacity of the beam, but was not contributed to increase the joint ductility under cyclic loads. 3) The shear stress factors. given by the ACI code would be modified in evaluating the shear strength of beam-column joints of frame which were constructed with high-strength concrete.

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

강관구속 고강도 철근콘크리트 기둥의 내진성능 (Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube)

  • 한병찬
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험 (Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections)

  • 최정욱;송진규;김준희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권4호
    • /
    • pp.99-108
    • /
    • 2007
  • 풍하중 및 지진하중등 횡하중이 작용하는 무량판 슬래브는 전단파괴와 같은 취성파괴를 지연시키기 위해서 충분한 전단강도와 연성능력을 보유하여야 한다. 본 연구에서는 반복 횡하중을 받는 무량판 슬래브의 전단강도와 변형성능을 고찰하기 위하여, 무보강 및 전단 보강된 총 4개의 내부기둥-슬래브 접합부를 실험하였다. 실험결과, 전단보강 슬래브의 이방향 전단강도는 무보강 슬래브보다 최대 1.5배까지 증가시켜 적용하는 콘크리트구조설계기준(KCI)과 ACI 318-02 기준은 중력하중만이 작용하는 경우에는 적절하나 조합하중 특히 횡하중의 영향이 클 경우에는 매우 불안전측 이었다. 한편, 변형성능 측면에서 슬래브-기둥 접합부의 1.5% 횡변위 성능을 확보하기 위하여 이방향 전단강도에 대한 중력하중비를 40%이하로 제한한 ACI-ASCE 352 위원회의 권고는 안전측인 것으로 나타났다.

기계적 정착된 전단보강근을 가진 RC 기둥의 구조적 거동 (Structural Behavior of RC Columns with Mechanically Anchored Crossties under Cyclic Loading)

  • 이성호;천성철;오보환;나환선;김상구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.59-62
    • /
    • 2005
  • Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2.

  • PDF

내진철골모멘트접합부 패널존의 전단좌굴 방지를 위한 패널존 상대강도 (Relative Panel Zone Strength in Seismic Steel Moment Connections for Prevention of Panel Zone Shear Buckling)

  • 김소연;이철호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.845-850
    • /
    • 2007
  • The empirical AISC panel zone thickness provision$(t_z\geq(d_z+w_z)$/90) to prevent the cyclic shear buckling of the panel zone was proposed based on the test data of Krawinkler et al. (1971) and Bertero et al. (1973) However, no published records of the equation development or any other background information appear to be available. The calibrated finite element analysis results of this study indicated that the AISC provision was not reasonable. In this study, through including the effects of the column axial force and the aspect ratio of the panel zone, a new equation for the relative strength between the beam and the panel zone was proposed such that the proposed equation can prevent the panel zone shear buckling and reduce the potential fracture associated with the kinking of the column flanges.

  • PDF

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.